Cargando…
Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste
In this study, adsorption characteristics of a negatively charged dye, Acid Blue 25 (AB25), on pomelo pith (PP) was studied by varying the adsorption parameters, with the aim of evaluating the adsorption mechanism and establishing the role of hydrogen bonding interactions of AB25 on agricultural was...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911607/ https://www.ncbi.nlm.nih.gov/pubmed/35268818 http://dx.doi.org/10.3390/molecules27051718 |
_version_ | 1784666859546607616 |
---|---|
author | Shahrin, Ensan Waatriah E. S. Narudin, Nur Alimatul Hakimah Shahri, Nurulizzatul Ningsheh M. Verinda, Sera Budi Nur, Muhammad Hobley, Jonathan Usman, Anwar |
author_facet | Shahrin, Ensan Waatriah E. S. Narudin, Nur Alimatul Hakimah Shahri, Nurulizzatul Ningsheh M. Verinda, Sera Budi Nur, Muhammad Hobley, Jonathan Usman, Anwar |
author_sort | Shahrin, Ensan Waatriah E. S. |
collection | PubMed |
description | In this study, adsorption characteristics of a negatively charged dye, Acid Blue 25 (AB25), on pomelo pith (PP) was studied by varying the adsorption parameters, with the aim of evaluating the adsorption mechanism and establishing the role of hydrogen bonding interactions of AB25 on agricultural wastes. The kinetics, intraparticle diffusion, mechanism, and thermodynamics of the AB25 adsorption were systematically evaluated and analyzed by pseudo-first-order and pseudo-second-order kinetic models, the Weber–Morris intraparticle and Boyd mass transfer models, the Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin isotherm models, and the Van’t Hoff equation. It was found that AB25 adsorption followed pseudo-second-order kinetics, governed by a two-step pore-volume intraparticle diffusion of external mass transfer of AB25 onto the PP surface. The adsorption process occurred spontaneously. The adsorption mechanism could be explained by the Langmuir isotherm model, and the maximum adsorption capacity was estimated to be 26.9 mg g(−1), which is comparable to many reported adsorbents derived from agricultural wastes. Changes in the vibrational spectra of the adsorbent before and after dye adsorption suggested that AB25 molecules are bound to the PP surface via electrostatic and hydrogen bonding interactions. The results demonstrated that the use of pomelo pith, similar to other agricultural wastes, would provide a basis to design a simple energy-saving, sustainable, and cost-effective approach to remove negatively charged synthetic dyes from wastewater. |
format | Online Article Text |
id | pubmed-8911607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89116072022-03-11 Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste Shahrin, Ensan Waatriah E. S. Narudin, Nur Alimatul Hakimah Shahri, Nurulizzatul Ningsheh M. Verinda, Sera Budi Nur, Muhammad Hobley, Jonathan Usman, Anwar Molecules Article In this study, adsorption characteristics of a negatively charged dye, Acid Blue 25 (AB25), on pomelo pith (PP) was studied by varying the adsorption parameters, with the aim of evaluating the adsorption mechanism and establishing the role of hydrogen bonding interactions of AB25 on agricultural wastes. The kinetics, intraparticle diffusion, mechanism, and thermodynamics of the AB25 adsorption were systematically evaluated and analyzed by pseudo-first-order and pseudo-second-order kinetic models, the Weber–Morris intraparticle and Boyd mass transfer models, the Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin isotherm models, and the Van’t Hoff equation. It was found that AB25 adsorption followed pseudo-second-order kinetics, governed by a two-step pore-volume intraparticle diffusion of external mass transfer of AB25 onto the PP surface. The adsorption process occurred spontaneously. The adsorption mechanism could be explained by the Langmuir isotherm model, and the maximum adsorption capacity was estimated to be 26.9 mg g(−1), which is comparable to many reported adsorbents derived from agricultural wastes. Changes in the vibrational spectra of the adsorbent before and after dye adsorption suggested that AB25 molecules are bound to the PP surface via electrostatic and hydrogen bonding interactions. The results demonstrated that the use of pomelo pith, similar to other agricultural wastes, would provide a basis to design a simple energy-saving, sustainable, and cost-effective approach to remove negatively charged synthetic dyes from wastewater. MDPI 2022-03-06 /pmc/articles/PMC8911607/ /pubmed/35268818 http://dx.doi.org/10.3390/molecules27051718 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shahrin, Ensan Waatriah E. S. Narudin, Nur Alimatul Hakimah Shahri, Nurulizzatul Ningsheh M. Verinda, Sera Budi Nur, Muhammad Hobley, Jonathan Usman, Anwar Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste |
title | Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste |
title_full | Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste |
title_fullStr | Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste |
title_full_unstemmed | Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste |
title_short | Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste |
title_sort | adsorption behavior and dynamic interactions of anionic acid blue 25 on agricultural waste |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911607/ https://www.ncbi.nlm.nih.gov/pubmed/35268818 http://dx.doi.org/10.3390/molecules27051718 |
work_keys_str_mv | AT shahrinensanwaatriahes adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste AT narudinnuralimatulhakimah adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste AT shahrinurulizzatulningshehm adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste AT verindaserabudi adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste AT nurmuhammad adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste AT hobleyjonathan adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste AT usmananwar adsorptionbehavioranddynamicinteractionsofanionicacidblue25onagriculturalwaste |