Cargando…

Additively Manufactured Composite Lug with Continuous Carbon Fibre Steering Based on Finite Element Analysis

In this study, the influence of curvilinear fibre reinforcement on the load-carrying capacity of additively manufactured continuous carbon fibre reinforced necked double shear lugs was investigated. A curvilinear fibre placement is descriptive of layers in extrusion-based continuous-fibre-reinforced...

Descripción completa

Detalles Bibliográficos
Autores principales: Savandaiah, Chethan, Sieberer, Stefan, Steinbichler, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911614/
https://www.ncbi.nlm.nih.gov/pubmed/35269052
http://dx.doi.org/10.3390/ma15051820
Descripción
Sumario:In this study, the influence of curvilinear fibre reinforcement on the load-carrying capacity of additively manufactured continuous carbon fibre reinforced necked double shear lugs was investigated. A curvilinear fibre placement is descriptive of layers in extrusion-based continuous-fibre-reinforced additive manufacturing with carbon fibres aligned in the directions of principal stress. The alternating layered fibre trajectories follow the maximum and minimum principal stress directions due to axial tension loading derived from two-dimensional finite element analysis (FEA). The digital image correlation was utilised to monitor the strain distribution during the application of tensile load. The 2D FEA data and the tensile test results obtained were comparable, the part strength and the linear approximation of stiffness data variability were minimal and well within the acceptable range. Nondestructive fractography was performed by utilising computed tomography (CT) to analyse the fractured regions of the tensile-tested lug. The CT scanned images aided in deducing the failure phenomenon in layered lugs; process-induced voids and fibre layup undulation were identified as the cause for lug failure.