Cargando…
Understanding the Biosynthesis of Paxisterol in Lichen-Derived Penicillium aurantiacobrunneum for Production of Fluorinated Derivatives
The U.S. endemic lichen (Niebla homalea)-derived Penicillium aurantiacobrunneum produced a cytotoxic paxisterol derivative named auransterol (2) and epi-citreoviridin (6). Feeding assay using (13)C(1)-labelled sodium acetate not only produced C-13-labelled paxisterol but also confirmed the biosynthe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911623/ https://www.ncbi.nlm.nih.gov/pubmed/35268742 http://dx.doi.org/10.3390/molecules27051641 |
Sumario: | The U.S. endemic lichen (Niebla homalea)-derived Penicillium aurantiacobrunneum produced a cytotoxic paxisterol derivative named auransterol (2) and epi-citreoviridin (6). Feeding assay using (13)C(1)-labelled sodium acetate not only produced C-13-labelled paxisterol but also confirmed the biosynthetic origin of the compound. The fluorination of bioactive compounds is known to improve pharmacological and pharmacokinetic effects. Our attempt to incorporate the fluorine atom in paxisterol and its derivatives using the fluorinated precursor sodium monofluoroacetate resulted in the isolation of 7-monofluoroacetyl paxisterol (7). The performed culture experiment, as well as the isolation and structure elucidation of the new fluorinated paxisterol, is discussed herein. |
---|