Cargando…
Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film
Using speckle patterns formed by an expanded and collimated He-Ne laser beam, we apply DIC (Digital Image Correlation) methods to estimate the deformation of LLDPE (linear low-density polyethylene) film. The laser beam was transmitted through the film specimen while a tensile machine applied a load...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911662/ https://www.ncbi.nlm.nih.gov/pubmed/35269075 http://dx.doi.org/10.3390/ma15051842 |
_version_ | 1784666878214406144 |
---|---|
author | Kopfler, Caroline Yoshida, Sanichiro Ghimire, Anup |
author_facet | Kopfler, Caroline Yoshida, Sanichiro Ghimire, Anup |
author_sort | Kopfler, Caroline |
collection | PubMed |
description | Using speckle patterns formed by an expanded and collimated He-Ne laser beam, we apply DIC (Digital Image Correlation) methods to estimate the deformation of LLDPE (linear low-density polyethylene) film. The laser beam was transmitted through the film specimen while a tensile machine applied a load to the specimen vertically. The transmitted laser light was projected on a screen, and the resultant image was captured by a digital camera. The captured image was analyzed both in space and frequency domains. For the space-domain analysis, the random speckle pattern was used to register the local displacement due to the deformation. For the frequency-domain analysis, the diffraction-like pattern, due to the horizontally-running, periodic groove-like structure of the film was used to characterize the overall deformation along vertical columns of analysis. It has been found that when the deformation is small and uniform, the conventional space domain analysis is applicable to the entire film specimen. However, once the deformation loses the spatial uniformity, the space-domain analysis falls short if applied to the entire specimen. The application of DIC to local (windowed) regions is still useful but time consuming. In the non-uniform situation, the frequency-domain analysis is found capable of revealing average deformation along each column of analysis. |
format | Online Article Text |
id | pubmed-8911662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89116622022-03-11 Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film Kopfler, Caroline Yoshida, Sanichiro Ghimire, Anup Materials (Basel) Article Using speckle patterns formed by an expanded and collimated He-Ne laser beam, we apply DIC (Digital Image Correlation) methods to estimate the deformation of LLDPE (linear low-density polyethylene) film. The laser beam was transmitted through the film specimen while a tensile machine applied a load to the specimen vertically. The transmitted laser light was projected on a screen, and the resultant image was captured by a digital camera. The captured image was analyzed both in space and frequency domains. For the space-domain analysis, the random speckle pattern was used to register the local displacement due to the deformation. For the frequency-domain analysis, the diffraction-like pattern, due to the horizontally-running, periodic groove-like structure of the film was used to characterize the overall deformation along vertical columns of analysis. It has been found that when the deformation is small and uniform, the conventional space domain analysis is applicable to the entire film specimen. However, once the deformation loses the spatial uniformity, the space-domain analysis falls short if applied to the entire specimen. The application of DIC to local (windowed) regions is still useful but time consuming. In the non-uniform situation, the frequency-domain analysis is found capable of revealing average deformation along each column of analysis. MDPI 2022-03-01 /pmc/articles/PMC8911662/ /pubmed/35269075 http://dx.doi.org/10.3390/ma15051842 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kopfler, Caroline Yoshida, Sanichiro Ghimire, Anup Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film |
title | Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film |
title_full | Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film |
title_fullStr | Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film |
title_full_unstemmed | Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film |
title_short | Application of Digital Image Correlation in Space and Frequency Domains to Deformation Analysis of Polymer Film |
title_sort | application of digital image correlation in space and frequency domains to deformation analysis of polymer film |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911662/ https://www.ncbi.nlm.nih.gov/pubmed/35269075 http://dx.doi.org/10.3390/ma15051842 |
work_keys_str_mv | AT kopflercaroline applicationofdigitalimagecorrelationinspaceandfrequencydomainstodeformationanalysisofpolymerfilm AT yoshidasanichiro applicationofdigitalimagecorrelationinspaceandfrequencydomainstodeformationanalysisofpolymerfilm AT ghimireanup applicationofdigitalimagecorrelationinspaceandfrequencydomainstodeformationanalysisofpolymerfilm |