Cargando…

Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery

Magnetically driven nanosponges with potential application as targeted drug delivery systems were prepared via the addition of magnetite nanoparticles to the synthesis of cyclodextrin and maltodextrin polymers crosslinked with 1,1′-carbonyldiimidazole. The magnetic nanoparticles were obtained separa...

Descripción completa

Detalles Bibliográficos
Autores principales: Caldera, Fabrizio, Nisticò, Roberto, Magnacca, Giuliana, Matencio, Adrián, Khazaei Monfared, Yousef, Trotta, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911700/
https://www.ncbi.nlm.nih.gov/pubmed/35269242
http://dx.doi.org/10.3390/nano12050754
Descripción
Sumario:Magnetically driven nanosponges with potential application as targeted drug delivery systems were prepared via the addition of magnetite nanoparticles to the synthesis of cyclodextrin and maltodextrin polymers crosslinked with 1,1′-carbonyldiimidazole. The magnetic nanoparticles were obtained separately via a coprecipitation mechanism involving inorganic iron salts in an alkaline environment. Four composite nanosponges were prepared by varying the content of magnetic nanoparticles (5 wt% and 10 wt%) in the cyclodextrin- and maltodextrin-based polymer matrix. The magnetic nanosponges were then characterised by FTIR, TGA, XRD, FESEM, and HRTEM analysis. The magnetic properties of the nanosponges were investigated via magnetisation curves collected at RT. Finally, the magnetic nanosponges were loaded with doxorubicin and tested as a drug delivery system. The nanosponges exhibited a loading capacity of approximately 3 wt%. Doxorubicin was released by the loaded nanosponges with sustained kinetics over a prolonged period of time.