Cargando…
Pin-on-Disc Modelling with Mesh Deformation Using Discrete Element Method
The pin-on-disc test is a standard sliding wear test used to analyse sliding properties, including wear contour and wear volume. In this study, long-term laboratory test performance is compared with a short-term numerical model. A discrete element method (DEM) approach combined with an Archard wear...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911808/ https://www.ncbi.nlm.nih.gov/pubmed/35269044 http://dx.doi.org/10.3390/ma15051813 |
Sumario: | The pin-on-disc test is a standard sliding wear test used to analyse sliding properties, including wear contour and wear volume. In this study, long-term laboratory test performance is compared with a short-term numerical model. A discrete element method (DEM) approach combined with an Archard wear model and a deformable geometry technique is used. The effect of mesh size on wear results is evaluated, and a scaling factor is defined to relate the number of revolutions between the experiment and the numerical model. The simulation results indicate that the mesh size of the disc has a significant effect on the wear contour. The wear depth and wear width follow a normal distribution after experiencing a run-in phase, while the wear volume has a quadratic relation with the number of revolutions. For the studied material combination, the calibration of the wear coefficient shows that the wear volume of the pin-on-disc test accurately matches the simulation results for a minimum of eight revolutions with a wear coefficient lower than 2 × 10(−11) Pa(−1). |
---|