Cargando…
Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling
Silicon (Si)-based anode materials can increase the energy density of lithium (Li)-ion batteries owing to the high weight and volume capacity of Si. However, their electrochemical properties rapidly deteriorate due to large volume changes in the electrode resulting from repeated charging and dischar...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911834/ https://www.ncbi.nlm.nih.gov/pubmed/35269103 http://dx.doi.org/10.3390/ma15051873 |
_version_ | 1784666937488310272 |
---|---|
author | Lee, Kikang Jeong, Jejun Chu, Yeoneyi Kim, Jongbeom Oh, Kyuhwan Moon, Jeongtak |
author_facet | Lee, Kikang Jeong, Jejun Chu, Yeoneyi Kim, Jongbeom Oh, Kyuhwan Moon, Jeongtak |
author_sort | Lee, Kikang |
collection | PubMed |
description | Silicon (Si)-based anode materials can increase the energy density of lithium (Li)-ion batteries owing to the high weight and volume capacity of Si. However, their electrochemical properties rapidly deteriorate due to large volume changes in the electrode resulting from repeated charging and discharging. In this study, we manufactured structurally stable Fe–Si alloy powders by performing high-energy milling for up to 24 h through the reduction of the Si phase size and the formation of the α-FeSi(2) phase. The cause behind the deterioration of the electrochemical properties of the Fe–Si alloy powder produced by over-milling (milling for an increased time) was investigated. The 12 h milled Fe–Si alloy powder showed the best electrochemical properties. Through the microstructural analysis of the Fe–Si alloy powders after the evaluation of half/full coin cells, powder resistance tests, and charge/discharge cycles, it was found that this was due to the low electrical conductivity and durability of β-FeSi(2). The findings provide insight into the possible improvements in battery performance through the commercialization of Fe–Si alloy powders produced by over-milling in a mechanical alloying process. |
format | Online Article Text |
id | pubmed-8911834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89118342022-03-11 Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling Lee, Kikang Jeong, Jejun Chu, Yeoneyi Kim, Jongbeom Oh, Kyuhwan Moon, Jeongtak Materials (Basel) Article Silicon (Si)-based anode materials can increase the energy density of lithium (Li)-ion batteries owing to the high weight and volume capacity of Si. However, their electrochemical properties rapidly deteriorate due to large volume changes in the electrode resulting from repeated charging and discharging. In this study, we manufactured structurally stable Fe–Si alloy powders by performing high-energy milling for up to 24 h through the reduction of the Si phase size and the formation of the α-FeSi(2) phase. The cause behind the deterioration of the electrochemical properties of the Fe–Si alloy powder produced by over-milling (milling for an increased time) was investigated. The 12 h milled Fe–Si alloy powder showed the best electrochemical properties. Through the microstructural analysis of the Fe–Si alloy powders after the evaluation of half/full coin cells, powder resistance tests, and charge/discharge cycles, it was found that this was due to the low electrical conductivity and durability of β-FeSi(2). The findings provide insight into the possible improvements in battery performance through the commercialization of Fe–Si alloy powders produced by over-milling in a mechanical alloying process. MDPI 2022-03-02 /pmc/articles/PMC8911834/ /pubmed/35269103 http://dx.doi.org/10.3390/ma15051873 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Kikang Jeong, Jejun Chu, Yeoneyi Kim, Jongbeom Oh, Kyuhwan Moon, Jeongtak Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling |
title | Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling |
title_full | Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling |
title_fullStr | Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling |
title_full_unstemmed | Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling |
title_short | Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling |
title_sort | properties of fe–si alloy anode for lithium-ion battery synthesized using mechanical milling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911834/ https://www.ncbi.nlm.nih.gov/pubmed/35269103 http://dx.doi.org/10.3390/ma15051873 |
work_keys_str_mv | AT leekikang propertiesoffesialloyanodeforlithiumionbatterysynthesizedusingmechanicalmilling AT jeongjejun propertiesoffesialloyanodeforlithiumionbatterysynthesizedusingmechanicalmilling AT chuyeoneyi propertiesoffesialloyanodeforlithiumionbatterysynthesizedusingmechanicalmilling AT kimjongbeom propertiesoffesialloyanodeforlithiumionbatterysynthesizedusingmechanicalmilling AT ohkyuhwan propertiesoffesialloyanodeforlithiumionbatterysynthesizedusingmechanicalmilling AT moonjeongtak propertiesoffesialloyanodeforlithiumionbatterysynthesizedusingmechanicalmilling |