Cargando…

Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method

This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanocluster...

Descripción completa

Detalles Bibliográficos
Autores principales: Saj, Alam, Alketbi, Shaikha, Ansari, Sumayya M., Anjum, Dalaver H., Mohammad, Baker, Aldosari, Haila M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911914/
https://www.ncbi.nlm.nih.gov/pubmed/35269250
http://dx.doi.org/10.3390/nano12050763
_version_ 1784666963027427328
author Saj, Alam
Alketbi, Shaikha
Ansari, Sumayya M.
Anjum, Dalaver H.
Mohammad, Baker
Aldosari, Haila M.
author_facet Saj, Alam
Alketbi, Shaikha
Ansari, Sumayya M.
Anjum, Dalaver H.
Mohammad, Baker
Aldosari, Haila M.
author_sort Saj, Alam
collection PubMed
description This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanoclusters’ size and yield was investigated. Au nanoclusters’ size and size uniformity were confirmed via transmission electron microscopy. In general, Au nanoclusters’ average diameter increased by increasing all source parameters, producing monodispersed nanoclusters of an average size range of 1.7 ± 0.1 nm to 9.1 ± 0.1 nm. Among all source parameters, inert gas flow rate exhibited a strong impact on nanoclusters’ average size, while sputtering discharge power showed great influence on Au nanoclusters’ yield. Results suggest that Au nanoclusters nucleate via a three-body collision mechanism and grow through a two-body collision mechanism, wherein the nanocluster embryos grow in size due to atomic condensation. Ultimately, the usefulness of the produced Au nanoclusters as catalysts for a vapor–liquid–solid technique was put to test to synthesize the phase change material germanium telluride nanowires.
format Online
Article
Text
id pubmed-8911914
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89119142022-03-11 Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method Saj, Alam Alketbi, Shaikha Ansari, Sumayya M. Anjum, Dalaver H. Mohammad, Baker Aldosari, Haila M. Nanomaterials (Basel) Article This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanoclusters’ size and yield was investigated. Au nanoclusters’ size and size uniformity were confirmed via transmission electron microscopy. In general, Au nanoclusters’ average diameter increased by increasing all source parameters, producing monodispersed nanoclusters of an average size range of 1.7 ± 0.1 nm to 9.1 ± 0.1 nm. Among all source parameters, inert gas flow rate exhibited a strong impact on nanoclusters’ average size, while sputtering discharge power showed great influence on Au nanoclusters’ yield. Results suggest that Au nanoclusters nucleate via a three-body collision mechanism and grow through a two-body collision mechanism, wherein the nanocluster embryos grow in size due to atomic condensation. Ultimately, the usefulness of the produced Au nanoclusters as catalysts for a vapor–liquid–solid technique was put to test to synthesize the phase change material germanium telluride nanowires. MDPI 2022-02-24 /pmc/articles/PMC8911914/ /pubmed/35269250 http://dx.doi.org/10.3390/nano12050763 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Saj, Alam
Alketbi, Shaikha
Ansari, Sumayya M.
Anjum, Dalaver H.
Mohammad, Baker
Aldosari, Haila M.
Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
title Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
title_full Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
title_fullStr Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
title_full_unstemmed Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
title_short Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
title_sort production of size-controlled gold nanoclusters for vapor–liquid–solid method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911914/
https://www.ncbi.nlm.nih.gov/pubmed/35269250
http://dx.doi.org/10.3390/nano12050763
work_keys_str_mv AT sajalam productionofsizecontrolledgoldnanoclustersforvaporliquidsolidmethod
AT alketbishaikha productionofsizecontrolledgoldnanoclustersforvaporliquidsolidmethod
AT ansarisumayyam productionofsizecontrolledgoldnanoclustersforvaporliquidsolidmethod
AT anjumdalaverh productionofsizecontrolledgoldnanoclustersforvaporliquidsolidmethod
AT mohammadbaker productionofsizecontrolledgoldnanoclustersforvaporliquidsolidmethod
AT aldosarihailam productionofsizecontrolledgoldnanoclustersforvaporliquidsolidmethod