Cargando…
Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS
Untargeted metabolomics approaches are emerging as powerful tools for the quality evaluation and authenticity of food and beverages and have been applied to wine science. However, most fail to report the method validation, quality assurance and/or quality control applied, as well as the assessment t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911954/ https://www.ncbi.nlm.nih.gov/pubmed/35268837 http://dx.doi.org/10.3390/molecules27051726 |
_version_ | 1784666975511773184 |
---|---|
author | Chávez-Márquez, Alejandra Gardea, Alfonso A. González-Rios, Humberto Vazquez-Moreno, Luz |
author_facet | Chávez-Márquez, Alejandra Gardea, Alfonso A. González-Rios, Humberto Vazquez-Moreno, Luz |
author_sort | Chávez-Márquez, Alejandra |
collection | PubMed |
description | Untargeted metabolomics approaches are emerging as powerful tools for the quality evaluation and authenticity of food and beverages and have been applied to wine science. However, most fail to report the method validation, quality assurance and/or quality control applied, as well as the assessment through the metabolomics-methodology pipeline. Knowledge of Mexican viticulture, enology and wine science remains scarce, thus untargeted metabolomics approaches arise as a suitable tool. The aim of this study is to validate an untargeted HS-SPME-GC-qTOF/MS method, with attention to data processing to characterize Cabernet Sauvignon wines from two vineyards and two vintages. Validation parameters for targeted methods are applied in conjunction with the development of a recursive analysis of data. The combination of some parameters for targeted studies (repeatability and reproducibility < 20% RSD; linearity > 0.99; retention-time reproducibility < 0.5% RSD; match-identification factor < 2.0% RSD) with recursive analysis of data (101 entities detected) warrants that both chromatographic and spectrometry-processing data were under control and provided high-quality results, which in turn differentiate wine samples according to site and vintage. It also shows potential biomarkers that can be identified. This is a step forward in the pursuit of Mexican wine characterization that could be used as an authentication tool. |
format | Online Article Text |
id | pubmed-8911954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89119542022-03-11 Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS Chávez-Márquez, Alejandra Gardea, Alfonso A. González-Rios, Humberto Vazquez-Moreno, Luz Molecules Article Untargeted metabolomics approaches are emerging as powerful tools for the quality evaluation and authenticity of food and beverages and have been applied to wine science. However, most fail to report the method validation, quality assurance and/or quality control applied, as well as the assessment through the metabolomics-methodology pipeline. Knowledge of Mexican viticulture, enology and wine science remains scarce, thus untargeted metabolomics approaches arise as a suitable tool. The aim of this study is to validate an untargeted HS-SPME-GC-qTOF/MS method, with attention to data processing to characterize Cabernet Sauvignon wines from two vineyards and two vintages. Validation parameters for targeted methods are applied in conjunction with the development of a recursive analysis of data. The combination of some parameters for targeted studies (repeatability and reproducibility < 20% RSD; linearity > 0.99; retention-time reproducibility < 0.5% RSD; match-identification factor < 2.0% RSD) with recursive analysis of data (101 entities detected) warrants that both chromatographic and spectrometry-processing data were under control and provided high-quality results, which in turn differentiate wine samples according to site and vintage. It also shows potential biomarkers that can be identified. This is a step forward in the pursuit of Mexican wine characterization that could be used as an authentication tool. MDPI 2022-03-07 /pmc/articles/PMC8911954/ /pubmed/35268837 http://dx.doi.org/10.3390/molecules27051726 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chávez-Márquez, Alejandra Gardea, Alfonso A. González-Rios, Humberto Vazquez-Moreno, Luz Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS |
title | Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS |
title_full | Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS |
title_fullStr | Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS |
title_full_unstemmed | Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS |
title_short | Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS |
title_sort | characterization of cabernet sauvignon wines by untargeted hs-spme gc-qtof-ms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911954/ https://www.ncbi.nlm.nih.gov/pubmed/35268837 http://dx.doi.org/10.3390/molecules27051726 |
work_keys_str_mv | AT chavezmarquezalejandra characterizationofcabernetsauvignonwinesbyuntargetedhsspmegcqtofms AT gardeaalfonsoa characterizationofcabernetsauvignonwinesbyuntargetedhsspmegcqtofms AT gonzalezrioshumberto characterizationofcabernetsauvignonwinesbyuntargetedhsspmegcqtofms AT vazquezmorenoluz characterizationofcabernetsauvignonwinesbyuntargetedhsspmegcqtofms |