Cargando…
Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells
Electron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta(2)O(5)) deposited by spin coating was explo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912079/ https://www.ncbi.nlm.nih.gov/pubmed/35269269 http://dx.doi.org/10.3390/nano12050780 |
Sumario: | Electron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta(2)O(5)) deposited by spin coating was explored as an electron transport material for perovskite solar cells, achieving power conversion efficiency (PCE) up to ~14%. Ultraviolet photoelectron spectroscopy (UPS) measurements revealed that the extraction of photogenerated electrons is facilitated due to proper alignment of bandgap energies. Steady-state photoluminescence spectroscopy (PL) verified efficient charge transport from perovskite absorber film to thin Ta(2)O(5) layer. Our findings suggest that tantalum oxide as an n-type semiconductor with a calculated carrier density of ~7 × 10(18)/cm(3) in amorphous Ta(2)O(5) films, is a potentially competitive candidate for an electron transport material in perovskite solar cells. |
---|