Cargando…

Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study

To characterize the dynamic modulus (E*) of the asphalt mixtures more accurately, a comparative study was shown in this paper, combining six ML models (BP, SVM, DT, RF, KNN, and LR) with the novelly developed MBAS (modified BAS, beetle antennae search) algorithm to check the potential to replace the...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Wenjuan, Huang, Xin, Yang, Zhengjun, Zhou, Mengmeng, Huang, Jiandong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912106/
https://www.ncbi.nlm.nih.gov/pubmed/35269021
http://dx.doi.org/10.3390/ma15051791
_version_ 1784667024549478400
author Xu, Wenjuan
Huang, Xin
Yang, Zhengjun
Zhou, Mengmeng
Huang, Jiandong
author_facet Xu, Wenjuan
Huang, Xin
Yang, Zhengjun
Zhou, Mengmeng
Huang, Jiandong
author_sort Xu, Wenjuan
collection PubMed
description To characterize the dynamic modulus (E*) of the asphalt mixtures more accurately, a comparative study was shown in this paper, combining six ML models (BP, SVM, DT, RF, KNN, and LR) with the novelly developed MBAS (modified BAS, beetle antennae search) algorithm to check the potential to replace the empirical model. The hyperparameter tuning process of the six ML models by the proposed MBAS algorithm showed satisfactory results. The calculation and evaluation process demonstrated fast convergence and significantly lower values of RMSE for the five ML models (BP, SVM, DT, RF, and KNN) to determine the E* of the asphalt mixtures. Comparing the performances of the six ML models in the prediction of the E* by the statistical coefficients and Monte Carlo simulation, the RF model showed the highest accuracy, efficiency, and robustness.
format Online
Article
Text
id pubmed-8912106
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89121062022-03-11 Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study Xu, Wenjuan Huang, Xin Yang, Zhengjun Zhou, Mengmeng Huang, Jiandong Materials (Basel) Article To characterize the dynamic modulus (E*) of the asphalt mixtures more accurately, a comparative study was shown in this paper, combining six ML models (BP, SVM, DT, RF, KNN, and LR) with the novelly developed MBAS (modified BAS, beetle antennae search) algorithm to check the potential to replace the empirical model. The hyperparameter tuning process of the six ML models by the proposed MBAS algorithm showed satisfactory results. The calculation and evaluation process demonstrated fast convergence and significantly lower values of RMSE for the five ML models (BP, SVM, DT, RF, and KNN) to determine the E* of the asphalt mixtures. Comparing the performances of the six ML models in the prediction of the E* by the statistical coefficients and Monte Carlo simulation, the RF model showed the highest accuracy, efficiency, and robustness. MDPI 2022-02-27 /pmc/articles/PMC8912106/ /pubmed/35269021 http://dx.doi.org/10.3390/ma15051791 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xu, Wenjuan
Huang, Xin
Yang, Zhengjun
Zhou, Mengmeng
Huang, Jiandong
Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
title Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
title_full Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
title_fullStr Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
title_full_unstemmed Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
title_short Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
title_sort developing hybrid machine learning models to determine the dynamic modulus (e*) of asphalt mixtures using parameters in witczak 1-40d model: a comparative study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912106/
https://www.ncbi.nlm.nih.gov/pubmed/35269021
http://dx.doi.org/10.3390/ma15051791
work_keys_str_mv AT xuwenjuan developinghybridmachinelearningmodelstodeterminethedynamicmoduluseofasphaltmixturesusingparametersinwitczak140dmodelacomparativestudy
AT huangxin developinghybridmachinelearningmodelstodeterminethedynamicmoduluseofasphaltmixturesusingparametersinwitczak140dmodelacomparativestudy
AT yangzhengjun developinghybridmachinelearningmodelstodeterminethedynamicmoduluseofasphaltmixturesusingparametersinwitczak140dmodelacomparativestudy
AT zhoumengmeng developinghybridmachinelearningmodelstodeterminethedynamicmoduluseofasphaltmixturesusingparametersinwitczak140dmodelacomparativestudy
AT huangjiandong developinghybridmachinelearningmodelstodeterminethedynamicmoduluseofasphaltmixturesusingparametersinwitczak140dmodelacomparativestudy