Cargando…
Developing Hybrid Machine Learning Models to Determine the Dynamic Modulus (E*) of Asphalt Mixtures Using Parameters in Witczak 1-40D Model: A Comparative Study
To characterize the dynamic modulus (E*) of the asphalt mixtures more accurately, a comparative study was shown in this paper, combining six ML models (BP, SVM, DT, RF, KNN, and LR) with the novelly developed MBAS (modified BAS, beetle antennae search) algorithm to check the potential to replace the...
Autores principales: | Xu, Wenjuan, Huang, Xin, Yang, Zhengjun, Zhou, Mengmeng, Huang, Jiandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912106/ https://www.ncbi.nlm.nih.gov/pubmed/35269021 http://dx.doi.org/10.3390/ma15051791 |
Ejemplares similares
-
Nonlinear Fatigue Damage Model of Asphalt Mixture Based on Dynamic Modulus and Residual Strength Decay
por: Liu, Hongfu, et al.
Publicado: (2019) -
Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture
por: Gu, Linhao, et al.
Publicado: (2019) -
Use of the Modified Ramberg-Osgood Material Model to Predict Dynamic Modulus Master Curves of Asphalt Mixtures
por: Primusz, Péter, et al.
Publicado: (2023) -
An Elementary Formula for the Initial Relaxation Modulus from the Creep Compliance for Asphalt Mixtures
por: Chen, Songqiang, et al.
Publicado: (2023) -
Analysis of Factors Influencing the Modulus of Hot-Recycled Asphalt Mixture with High RAP
por: Chen, Zining, et al.
Publicado: (2023)