Cargando…
Modeling latent spatio-temporal disease incidence using penalized composite link models
Epidemiological data are frequently recorded at coarse spatio-temporal resolutions to protect confidential information or to summarize it in a compact manner. However, the detailed patterns followed by the source data, which may be of interest to researchers and public health officials, are overlook...
Autores principales: | Lee, Dae-Jin, Durbán, María, Ayma, Diego, Van de Kassteele, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912133/ https://www.ncbi.nlm.nih.gov/pubmed/35271577 http://dx.doi.org/10.1371/journal.pone.0263711 |
Ejemplares similares
-
A spatio-temporal model based on discrete latent variables for the analysis of COVID-19 incidence
por: Bartolucci, Francesco, et al.
Publicado: (2022) -
Spatio-temporal stochastic differential equations for crime incidence modeling
por: Calatayud, Julia, et al.
Publicado: (2023) -
STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization
por: Kargas, Nikos, et al.
Publicado: (2020) -
Spatio-temporal air pollution modelling using a compositional approach
por: Sánchez-Balseca, Joseph, et al.
Publicado: (2020) -
Bayesian spatio-temporal modeling of mortality in relation to malaria incidence in Western Kenya
por: Khagayi, Sammy, et al.
Publicado: (2017)