Cargando…

High cellulose dietary intake relieves asthma inflammation through the intestinal microbiome in a mouse model

Numerous epidemiological studies have shown that a high dietary fiber intake is associated inversely with the incidence of asthma in the population. There have been many studies on the role of soluble dietary fiber, but the mechanism of action for insoluble dietary fiber, such as cellulose-the most...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Song, Yuan, Guifang, Li, Cunya, Xiong, Yang, Zhong, Xuemei, Li, Xiaoyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912215/
https://www.ncbi.nlm.nih.gov/pubmed/35271579
http://dx.doi.org/10.1371/journal.pone.0263762
Descripción
Sumario:Numerous epidemiological studies have shown that a high dietary fiber intake is associated inversely with the incidence of asthma in the population. There have been many studies on the role of soluble dietary fiber, but the mechanism of action for insoluble dietary fiber, such as cellulose-the most widely existing dietary fiber, in asthma is still unclear. The current study investigated the outcomes of a high-cellulose diet in a mouse model of asthma and detected pathological manifestations within the lungs, changes in the intestinal microbiome, and changes in intestinal short-chain fatty acids (SCFAs) in mice. A high-cellulose diet can reduce lung inflammation and asthma symptoms in asthmatic mice. Furthermore, it dramatically changes the composition of the intestinal microbiome. At the family level, a new dominant fungus family Peptostreptococcaceae is produced, and at the genus level, the unique genus Romboutsla, [Ruminococcus]_torques_group was generated. These genera and families of bacteria are closely correlated with lipid metabolism in vivo. Many studies have proposed that the mechanism of dietary fiber regulating asthma may involve the intestinal microbiome producing SCFAs, but the current research shows that a high-cellulose diet cannot increase the content of SCFAs in the intestine. These data suggest that a high-cellulose diet decreases asthma symptoms by altering the composition of the intestinal microbiome, however, this mechanism is thought to be independent of SCFAs and may involve the regulation of lipid metabolism.