Cargando…
Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia
Microdochium nivale is one of the most harmful fungal diseases, causing colossal yield losses and deteriorating grain quality. Wheat genotypes from the world collection of the N.I. Vavilov Institute (VIR) were evaluated for fifty years to investigate their resistance to biotic stress factors (M. niv...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912473/ https://www.ncbi.nlm.nih.gov/pubmed/35270169 http://dx.doi.org/10.3390/plants11050699 |
_version_ | 1784667140880596992 |
---|---|
author | Temirbekova, Sulukhan K. Kulikov, Ivan M. Ashirbekov, Mukhtar Z. Afanasyeva, Yuliya V. Beloshapkina, Olga O. Tyryshkin, Lev G. Zuev, Evgeniy V. Kirakosyan, Rima N. Glinushkin, Alexey P. Potapova, Elena S. Rebouh, Nazih Y. |
author_facet | Temirbekova, Sulukhan K. Kulikov, Ivan M. Ashirbekov, Mukhtar Z. Afanasyeva, Yuliya V. Beloshapkina, Olga O. Tyryshkin, Lev G. Zuev, Evgeniy V. Kirakosyan, Rima N. Glinushkin, Alexey P. Potapova, Elena S. Rebouh, Nazih Y. |
author_sort | Temirbekova, Sulukhan K. |
collection | PubMed |
description | Microdochium nivale is one of the most harmful fungal diseases, causing colossal yield losses and deteriorating grain quality. Wheat genotypes from the world collection of the N.I. Vavilov Institute (VIR) were evaluated for fifty years to investigate their resistance to biotic stress factors (M. nivale). Between 350 to 1085 of winter wheat genotypes were investigated annually. Ten out of fifty years were identified as rot epiphytotics (1978, 1986, 1989, 1990, 1993, 1998, 2001, 2003, 2005 and 2021). The wheat collection was investigated by following the VIR methodological requirements and CMEA unified classification of Triticum aestivum L. The field investigations were carried out in the early spring during fixed-route observations and data collection was included on the spread and development degree of the disease, followed by microbiological and microscopic pathogen identifications. The observations revealed that the primary reason for pink snow mold to infect the wheat crops was abiotic stress factors, such as thawed soil covered in snow that increased the soil temperature by 1.0–4.6 °C above normal. Under these conditions, the plants kept growing, quickly exhausting their carbohydrate and protein resources, thus weakening their immune systems, which made them an easy target for different infections, mainly cryophilic fungi, predominantly Microdochium nivale in the Moscow region. In some years, the joint effect of abiotic and biotic stresses caused crop failure, warranting the replanting of the spring wheat. The investigated wheat genotypes exhibited variable resistance to pink snow mold. The genotypes Mironovskaya 808 (k-43920) from Ukraine;l Nemchinovskaya 846 (k-56861), from Russia; Novobanatka (k-51761) from Yugoslavia; Liwilla (k-57580) from Poland; Zdar (UH 7050) from the Czech Republic; Maris Plowman (k-57944) from the United Kingdom; Pokal (k-56827) from Austria; Hvede Sarah (k-56289) from Denmark; Moldova 83 (k-59750) from Romania; Compal (k-57585) from Germany; Linna (k-45889) from Finland and Kehra (k-34228) from Estonia determined the sources, stability and tolerance to be used in advanced breeding programs. |
format | Online Article Text |
id | pubmed-8912473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89124732022-03-11 Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia Temirbekova, Sulukhan K. Kulikov, Ivan M. Ashirbekov, Mukhtar Z. Afanasyeva, Yuliya V. Beloshapkina, Olga O. Tyryshkin, Lev G. Zuev, Evgeniy V. Kirakosyan, Rima N. Glinushkin, Alexey P. Potapova, Elena S. Rebouh, Nazih Y. Plants (Basel) Article Microdochium nivale is one of the most harmful fungal diseases, causing colossal yield losses and deteriorating grain quality. Wheat genotypes from the world collection of the N.I. Vavilov Institute (VIR) were evaluated for fifty years to investigate their resistance to biotic stress factors (M. nivale). Between 350 to 1085 of winter wheat genotypes were investigated annually. Ten out of fifty years were identified as rot epiphytotics (1978, 1986, 1989, 1990, 1993, 1998, 2001, 2003, 2005 and 2021). The wheat collection was investigated by following the VIR methodological requirements and CMEA unified classification of Triticum aestivum L. The field investigations were carried out in the early spring during fixed-route observations and data collection was included on the spread and development degree of the disease, followed by microbiological and microscopic pathogen identifications. The observations revealed that the primary reason for pink snow mold to infect the wheat crops was abiotic stress factors, such as thawed soil covered in snow that increased the soil temperature by 1.0–4.6 °C above normal. Under these conditions, the plants kept growing, quickly exhausting their carbohydrate and protein resources, thus weakening their immune systems, which made them an easy target for different infections, mainly cryophilic fungi, predominantly Microdochium nivale in the Moscow region. In some years, the joint effect of abiotic and biotic stresses caused crop failure, warranting the replanting of the spring wheat. The investigated wheat genotypes exhibited variable resistance to pink snow mold. The genotypes Mironovskaya 808 (k-43920) from Ukraine;l Nemchinovskaya 846 (k-56861), from Russia; Novobanatka (k-51761) from Yugoslavia; Liwilla (k-57580) from Poland; Zdar (UH 7050) from the Czech Republic; Maris Plowman (k-57944) from the United Kingdom; Pokal (k-56827) from Austria; Hvede Sarah (k-56289) from Denmark; Moldova 83 (k-59750) from Romania; Compal (k-57585) from Germany; Linna (k-45889) from Finland and Kehra (k-34228) from Estonia determined the sources, stability and tolerance to be used in advanced breeding programs. MDPI 2022-03-04 /pmc/articles/PMC8912473/ /pubmed/35270169 http://dx.doi.org/10.3390/plants11050699 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Temirbekova, Sulukhan K. Kulikov, Ivan M. Ashirbekov, Mukhtar Z. Afanasyeva, Yuliya V. Beloshapkina, Olga O. Tyryshkin, Lev G. Zuev, Evgeniy V. Kirakosyan, Rima N. Glinushkin, Alexey P. Potapova, Elena S. Rebouh, Nazih Y. Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia |
title | Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia |
title_full | Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia |
title_fullStr | Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia |
title_full_unstemmed | Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia |
title_short | Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia |
title_sort | evaluation of wheat resistance to snow mold caused by microdochium nivale (fr) samuels and i.c. hallett under abiotic stress influence in the central non-black earth region of russia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912473/ https://www.ncbi.nlm.nih.gov/pubmed/35270169 http://dx.doi.org/10.3390/plants11050699 |
work_keys_str_mv | AT temirbekovasulukhank evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT kulikovivanm evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT ashirbekovmukhtarz evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT afanasyevayuliyav evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT beloshapkinaolgao evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT tyryshkinlevg evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT zuevevgeniyv evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT kirakosyanriman evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT glinushkinalexeyp evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT potapovaelenas evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia AT rebouhnazihy evaluationofwheatresistancetosnowmoldcausedbymicrodochiumnivalefrsamuelsandichallettunderabioticstressinfluenceinthecentralnonblackearthregionofrussia |