Cargando…
Multi-Species Prediction of Physiological Traits with Hyperspectral Modeling
Lack of high-throughput phenotyping is a bottleneck to breeding for abiotic stress tolerance in crop plants. Efficient and non-destructive hyperspectral imaging can quantify plant physiological traits under abiotic stresses; however, prediction models generally are developed for few genotypes of one...
Autores principales: | Lin, Meng-Yang, Lynch, Valerie, Ma, Dongdong, Maki, Hideki, Jin, Jian, Tuinstra, Mitchell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912614/ https://www.ncbi.nlm.nih.gov/pubmed/35270145 http://dx.doi.org/10.3390/plants11050676 |
Ejemplares similares
-
Quantifying physiological trait variation with automated hyperspectral imaging in rice
por: Ting, To-Chia, et al.
Publicado: (2023) -
Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning
por: Furbank, Robert T., et al.
Publicado: (2021) -
Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
por: Silva-Perez, Viridiana, et al.
Publicado: (2018) -
Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models
por: Tolley, Seth A., et al.
Publicado: (2023) -
Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality
por: Ma, Dongdong, et al.
Publicado: (2020)