Cargando…
Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata
Na(+) toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na(+) uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Tw...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912616/ https://www.ncbi.nlm.nih.gov/pubmed/35270125 http://dx.doi.org/10.3390/plants11050656 |
_version_ | 1784667186984386560 |
---|---|
author | Ishikawa, Tetsuya Shabala, Lana Zhou, Meixue Venkataraman, Gayatri Yu, Min Sellamuthu, Gothandapani Chen, Zhong-Hua Shabala, Sergey |
author_facet | Ishikawa, Tetsuya Shabala, Lana Zhou, Meixue Venkataraman, Gayatri Yu, Min Sellamuthu, Gothandapani Chen, Zhong-Hua Shabala, Sergey |
author_sort | Ishikawa, Tetsuya |
collection | PubMed |
description | Na(+) toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na(+) uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na(+) uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na(+) loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na(+) concentration by increased activity of a high affinity K(+) transporter HKT1;5 (essential for xylem Na(+) unloading) and a Na(+)/H(+) exchanger NHX (for sequestering Na(+) and K(+) into root vacuoles). Cultivated rice prevented Na(+) uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na(+) uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na(+)/H(+) Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na(+) entry into root cells while cultivated rice relies heavily on SOS1-mediating Na(+) exclusion, with major penalties imposed by the existence of the “futile cycle” at the plasma membrane. |
format | Online Article Text |
id | pubmed-8912616 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89126162022-03-11 Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata Ishikawa, Tetsuya Shabala, Lana Zhou, Meixue Venkataraman, Gayatri Yu, Min Sellamuthu, Gothandapani Chen, Zhong-Hua Shabala, Sergey Plants (Basel) Article Na(+) toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na(+) uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na(+) uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na(+) loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na(+) concentration by increased activity of a high affinity K(+) transporter HKT1;5 (essential for xylem Na(+) unloading) and a Na(+)/H(+) exchanger NHX (for sequestering Na(+) and K(+) into root vacuoles). Cultivated rice prevented Na(+) uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na(+) uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na(+)/H(+) Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na(+) entry into root cells while cultivated rice relies heavily on SOS1-mediating Na(+) exclusion, with major penalties imposed by the existence of the “futile cycle” at the plasma membrane. MDPI 2022-02-28 /pmc/articles/PMC8912616/ /pubmed/35270125 http://dx.doi.org/10.3390/plants11050656 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ishikawa, Tetsuya Shabala, Lana Zhou, Meixue Venkataraman, Gayatri Yu, Min Sellamuthu, Gothandapani Chen, Zhong-Hua Shabala, Sergey Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata |
title | Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata |
title_full | Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata |
title_fullStr | Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata |
title_full_unstemmed | Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata |
title_short | Comparative Analysis of Root Na(+) Relation under Salinity between Oryza sativa and Oryza coarctata |
title_sort | comparative analysis of root na(+) relation under salinity between oryza sativa and oryza coarctata |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912616/ https://www.ncbi.nlm.nih.gov/pubmed/35270125 http://dx.doi.org/10.3390/plants11050656 |
work_keys_str_mv | AT ishikawatetsuya comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT shabalalana comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT zhoumeixue comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT venkataramangayatri comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT yumin comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT sellamuthugothandapani comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT chenzhonghua comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata AT shabalasergey comparativeanalysisofrootnarelationundersalinitybetweenoryzasativaandoryzacoarctata |