Cargando…

The Effect of Superabsorbent Polymer on the Resilient and Plastic Strain Behavior of Cemented Soil under Traffic Load

In road construction, a large number of excavated soils need to be treated with stabilizers. The addition of superabsorbent polymer (SAP) can improve the road performance of these stabilized soils. In order to predict roadbed deformation, dynamic triaxial tests were carried out on cemented soil cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Di, Peng, Jie, Bai, Lanlan, Li, Gang, Lin, Hongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912834/
https://www.ncbi.nlm.nih.gov/pubmed/35267751
http://dx.doi.org/10.3390/polym14050929
Descripción
Sumario:In road construction, a large number of excavated soils need to be treated with stabilizers. The addition of superabsorbent polymer (SAP) can improve the road performance of these stabilized soils. In order to predict roadbed deformation, dynamic triaxial tests were carried out on cemented soil containing SAP to investigate its resilient and plastic strain behavior. The effects of SAP content, cyclic stress ratio, and loading frequency on cement-stabilized soils with SAP were analyzed combined with the number of cycles. This study demonstrates how these influencing factors effect the resilient strain, dynamic elastic modulus, and accumulated plastic strain, which are crucial to better understanding the strain behavior of cement-stabilized soil with SAP. The results show that SAP can significantly improve the brittle failure characteristics and dynamic strength of cement-stabilized soil. Soil with higher SAP content possesses smaller accumulated plastic strain; with the increase in the cyclic stress ratio, the dynamic elastic modulus decreases significantly, whereas the accumulated plastic strain has the opposite trend. In addition, the lower frequency produces larger cumulative axial strain.