Cargando…

Agathis robusta Bark Essential Oil Effectiveness against COVID-19: Chemical Composition, In Silico and In Vitro Approaches

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), the causative agent of Coronavirus Disease 2019 (COVID-19), has seriously threatened global health. Alongside the approved vaccines, the discovery of prospective anti-COVID-19 drugs has been progressively targeted. Essential oils (EOs) pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohamed, Maged E., Tawfeek, Nora, Elbaramawi, Samar S., Fikry, Eman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912836/
https://www.ncbi.nlm.nih.gov/pubmed/35270131
http://dx.doi.org/10.3390/plants11050663
Descripción
Sumario:Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), the causative agent of Coronavirus Disease 2019 (COVID-19), has seriously threatened global health. Alongside the approved vaccines, the discovery of prospective anti-COVID-19 drugs has been progressively targeted. Essential oils (EOs) provide a rich source of compounds with valuable antiviral activities that may contribute as effective agents against COVID-19. In this study, the EO of Agathus robusta bark was investigated for its chemical composition and its antiviral activity against SARS-CoV2. Overall, 26 constituents were identified by gas chromatography-mass spectrometry (GC-MS) analysis. α-Pinene, tricyclene, α-terpineol, limonene, d-camphene, trans-pinocarveol, α-phellandren-8-ol, L-β-pinene and borneol were the major components. In silico docking of these constituents against viral key enzymes, spike receptor-binding domain (RBD), main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), using Molecular Operating Environment (MOE) software revealed good binding affinities of the components to the active site of the selected targets, especially, the RBD. In Vitro antiviral MTT and cytopathic effect inhibition assays demonstrated a promising anti SARS-CoV2 for A. robusta bark EO, with a significant selectivity index of 17.5. The results suggested using this EO or its individual components for the protection against or treatment of COVID-19.