Cargando…
Development of Eco-Friendly Nanomembranes of Aloe vera/PVA/ZnO for Potential Applications in Medical Devices
Due to the current COVID-19 pandemic, there is a crucial need for the development of antimicrobial and antiviral personal protective equipment such as facemasks and gowns. Therefore, in this research we fabricated electrospun nanofibers composite with polyvinyl alcohol, aloe vera, and zinc oxide nan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912846/ https://www.ncbi.nlm.nih.gov/pubmed/35267852 http://dx.doi.org/10.3390/polym14051029 |
Sumario: | Due to the current COVID-19 pandemic, there is a crucial need for the development of antimicrobial and antiviral personal protective equipment such as facemasks and gowns. Therefore, in this research we fabricated electrospun nanofibers composite with polyvinyl alcohol, aloe vera, and zinc oxide nanoparticles for end application in medical devices. Electrospun nanofibers were made with varying concentrations of aloe vera (1%, 2%, 3%, 4%) having a constant concentration of ZnO (0.5%) with varying concentrations of ZnO nanoparticles (1%, 2%, 3%, 4%) having a constant concentration of aloe vera (0.5%). To check the morphology and composition, all prepared nanofibers were subjected to different characterization techniques, such as Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). In addition, its antimicrobial activity was checked both with qualitative and quantitative approaches against gram-positive (Staphylococcus aureus) bacteria and gram-negative (Escherichia coli) bacteria. The results suggest that increasing ZnO concentration kills and inhibits bacterial growth more proficiently compared to increasing aloe vera concentration in electrospun nanofibers; the highest antimicrobial was found with 4% ZnO, killing almost 100% of gram-positive (Staphylococcus aureus) bacteria and 99.2% of gram-negative (Escherichia coli) bacteria. These fabricated nanofibers have potential applications in medical devices and would help control the spread of many diseases. |
---|