Cargando…

GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage

Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (G...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Premranjan, Osahon, Ob W., Sekhar, Rajagopal V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912885/
https://www.ncbi.nlm.nih.gov/pubmed/35268089
http://dx.doi.org/10.3390/nu14051114
_version_ 1784667276056723456
author Kumar, Premranjan
Osahon, Ob W.
Sekhar, Rajagopal V.
author_facet Kumar, Premranjan
Osahon, Ob W.
Sekhar, Rajagopal V.
author_sort Kumar, Premranjan
collection PubMed
description Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging. Based on published human studies where we found that supplementing glycine and N-acetylcysteine (GlyNAC) improved/corrected GSH deficiency, OxS and mitochondrial dysfunction, we hypothesized that GlyNAC supplementation could increase longevity. We tested our hypothesis by evaluating the effect of supplementing GlyNAC vs. placebo in C57BL/6J mice on (a) length of life; and (b) age-associated GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage in the heart, liver and kidneys. Results showed that mice receiving GlyNAC supplementation (1) lived 24% longer than control mice; (2) improved/corrected impaired GSH synthesis, GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage. These studies provide proof-of-concept that GlyNAC supplementation can increase lifespan and improve multiple age-associated defects. GlyNAC could be a novel and simple nutritional supplement to improve lifespan and healthspan, and warrants additional investigation.
format Online
Article
Text
id pubmed-8912885
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89128852022-03-11 GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage Kumar, Premranjan Osahon, Ob W. Sekhar, Rajagopal V. Nutrients Article Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging. Based on published human studies where we found that supplementing glycine and N-acetylcysteine (GlyNAC) improved/corrected GSH deficiency, OxS and mitochondrial dysfunction, we hypothesized that GlyNAC supplementation could increase longevity. We tested our hypothesis by evaluating the effect of supplementing GlyNAC vs. placebo in C57BL/6J mice on (a) length of life; and (b) age-associated GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage in the heart, liver and kidneys. Results showed that mice receiving GlyNAC supplementation (1) lived 24% longer than control mice; (2) improved/corrected impaired GSH synthesis, GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage. These studies provide proof-of-concept that GlyNAC supplementation can increase lifespan and improve multiple age-associated defects. GlyNAC could be a novel and simple nutritional supplement to improve lifespan and healthspan, and warrants additional investigation. MDPI 2022-03-07 /pmc/articles/PMC8912885/ /pubmed/35268089 http://dx.doi.org/10.3390/nu14051114 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kumar, Premranjan
Osahon, Ob W.
Sekhar, Rajagopal V.
GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage
title GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage
title_full GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage
title_fullStr GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage
title_full_unstemmed GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage
title_short GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage
title_sort glynac (glycine and n-acetylcysteine) supplementation in mice increases length of life by correcting glutathione deficiency, oxidative stress, mitochondrial dysfunction, abnormalities in mitophagy and nutrient sensing, and genomic damage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912885/
https://www.ncbi.nlm.nih.gov/pubmed/35268089
http://dx.doi.org/10.3390/nu14051114
work_keys_str_mv AT kumarpremranjan glynacglycineandnacetylcysteinesupplementationinmiceincreaseslengthoflifebycorrectingglutathionedeficiencyoxidativestressmitochondrialdysfunctionabnormalitiesinmitophagyandnutrientsensingandgenomicdamage
AT osahonobw glynacglycineandnacetylcysteinesupplementationinmiceincreaseslengthoflifebycorrectingglutathionedeficiencyoxidativestressmitochondrialdysfunctionabnormalitiesinmitophagyandnutrientsensingandgenomicdamage
AT sekharrajagopalv glynacglycineandnacetylcysteinesupplementationinmiceincreaseslengthoflifebycorrectingglutathionedeficiencyoxidativestressmitochondrialdysfunctionabnormalitiesinmitophagyandnutrientsensingandgenomicdamage