Cargando…

Visual Object Tracking Algorithm Based on Biological Visual Information Features and Few-Shot Learning

Eye tracking is currently a research hotspot in the territory of service robotics. There is an urgent need for machine vision technique in the territory of video surveillance, and biological visual object following is one of the important basic research problems. By tracking the object of interest a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dawei, Yang, Tingting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913116/
https://www.ncbi.nlm.nih.gov/pubmed/35281201
http://dx.doi.org/10.1155/2022/3422859
Descripción
Sumario:Eye tracking is currently a research hotspot in the territory of service robotics. There is an urgent need for machine vision technique in the territory of video surveillance, and biological visual object following is one of the important basic research problems. By tracking the object of interest and recording the tracking trajectory, we can extract a structure from a video. It can also analyze the abnormal behavior of groups or individuals in the video or assist the public security organs in inquiring and searching for evidence of criminal suspects, etc. Moving object following has always been one of the frontier topics in the territory of machine vision, and it has very important appliances in mobile robot positioning and navigation, multirobot formation, lunar exploration, and intelligent monitoring. Moving object following has always been one of the frontier topics in the territory of machine vision, and it has very important appliances in mobile robot positioning and navigation, multirobot formation, lunar exploration, and intelligent monitoring. Moving object following in visual surveillance is easily affected by factors such as occlusion, rapid object movement, and appearance changes, and it is difficult to solve these problems effectively with single-layer features. This paper adopts a visual object following algorithm based on visual information features and few-shot learning, which effectively improves the accuracy and robustness of tracking.