Cargando…
Utility of Clinical–Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions
PURPOSE: To determine the predictive performance of the integrated model based on clinical factors and radiomic features for the accurate identification of clinically significant prostate cancer (csPCa) among Prostate Imaging Reporting and Data System (PI-RADS) 3 lesions. MATERIALS AND METHODS: A re...
Autores principales: | Jin, Pengfei, Yang, Liqin, Qiao, Xiaomeng, Hu, Chunhong, Hu, Chenhan, Wang, Ximing, Bao, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913337/ https://www.ncbi.nlm.nih.gov/pubmed/35280813 http://dx.doi.org/10.3389/fonc.2022.840786 |
Ejemplares similares
-
MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI
por: Chen, Tong, et al.
Publicado: (2022) -
Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study
por: Jin, Pengfei, et al.
Publicado: (2023) -
Development and validation of a nomogram based on biparametric MRI PI-RADS v2.1 and clinical parameters to avoid unnecessary prostate biopsies
por: Wang, Yunhan, et al.
Publicado: (2023) -
Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature
por: Zhang, Li, et al.
Publicado: (2021) -
Autonomous Detection and Classification of PI-RADS Lesions in an MRI Screening Population Incorporating Multicenter-Labeled Deep Learning and Biparametric Imaging: Proof of Concept
por: Winkel, David J., et al.
Publicado: (2020)