Cargando…

Plant-water sensitivity regulates wildfire vulnerability

Extreme wildfires extensively impact human health and the environment. Increasing vapour pressure deficit (VPD) has led to a chronic increase in wildfire area in the western United States, yet some regions have been more affected than others. Here we show that for the same increase in VPD, burned ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Krishna, Williams, A. Park, Diffenbaugh, Noah S., Yebra, Marta, Konings, Alexandra G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913365/
https://www.ncbi.nlm.nih.gov/pubmed/35132185
http://dx.doi.org/10.1038/s41559-021-01654-2
Descripción
Sumario:Extreme wildfires extensively impact human health and the environment. Increasing vapour pressure deficit (VPD) has led to a chronic increase in wildfire area in the western United States, yet some regions have been more affected than others. Here we show that for the same increase in VPD, burned area increases more in regions where vegetation moisture shows greater sensitivity to water limitation (plant-water sensitivity; R(2) = 0.71). This has led to rapid increases in human exposure to wildfire risk, both because the population living in areas with high plant-water sensitivity grew 50% faster during 1990–2010 than in other wildland–urban interfaces and because VPD has risen most rapidly in these vulnerable areas. As plant-water sensitivity is strongly linked to wildfire vulnerability, accounting for ecophysiological controls should improve wildfire forecasts. If recent trends in VPD and demographic shifts continue, human wildfire risk will probably continue to increase.