Cargando…

Lipid peroxidation reduction and hippocampal and cortical neurons protection against ischemic damage in animal model using Stellaria media

This study was aimed to determine the neuroprotective influence of Stellaria media in terms of restoring normal state of the rat’s hippocampus and cortex after oxidative insult caused by in vitro ischemia and reperfusion. Cell viability and membrane integrity were assessed using MTT and lactate dehy...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Wasim, Ahmad, Mushtaq, Umar Khayam Sahibzada, Muhammad, Khusro, Ameer, Emran, Talha Bin, Muhammedali Alnasrawi, Abeer, Alkahtani, Jawaher, Elshikh, Mohamed S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913427/
https://www.ncbi.nlm.nih.gov/pubmed/35280571
http://dx.doi.org/10.1016/j.sjbs.2021.10.033
Descripción
Sumario:This study was aimed to determine the neuroprotective influence of Stellaria media in terms of restoring normal state of the rat’s hippocampus and cortex after oxidative insult caused by in vitro ischemia and reperfusion. Cell viability and membrane integrity were assessed using MTT and lactate dehydrogenase (LDH) assay, respectively. Ischemic insult was introduced in the rat brain’s hippocampal and cortical slivers by exposing oxygen and glucose deficiency (OGD) for 2 h, followed by 1 h of re-perfusion. Cellular oxidative stress levels were quantified by incorporating 2ʹ,7ʹ-dichlorofluorescein diacetate fluorescent probes. Additionally, the lipid peroxidation was assessed using TBARS assay. Findings revealed significant neuroprotection against OGD-induced mitochondrial impairment at 40 µg/mL of S. media in rat’s hippocampal and cortical slices. The LDH levels were decreased significantly (P < 0.001) during pre-incubation and reoxygenation periods using varied concentrations of S. media extract. Cellular oxidative stress levels results showed significant (P < 0.001) reduction in dichlorofluorescein fluorescence in slices homogenate of hippocampus and cortex using S. media extract. The lipid peroxidation assay results showed decreased (P < 0.01) levels of malondialdehyde in liver tissues of treated rats treated (200 mg/kg body weight) when compared to the ischemic animal. In summary, findings clearly indicated the neuroprotective effects of extract against in vitro ischemia in brain hippocampal and cortex slivers. S. media could undoubtedly be utilized as a healing agent in preventing neuronal cells’ loss during is chemic-reperfusion process.