Cargando…
Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method
Brain-computer interfaces (BCIs) enable communication between humans and machines by translating brain activity into control commands. Electroencephalography (EEG) signals are one of the most used brain signals in non-invasive BCI applications but are often contaminated with noise. Therefore, it is...
Autores principales: | Ali, Omair, Saif-ur-Rehman, Muhammad, Dyck, Susanne, Glasmachers, Tobias, Iossifidis, Ioannis, Klaes, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913630/ https://www.ncbi.nlm.nih.gov/pubmed/35273310 http://dx.doi.org/10.1038/s41598-022-07992-w |
Ejemplares similares
-
Seizure Prediction in EEG Signals Using STFT and Domain Adaptation
por: Peng, Peizhen, et al.
Publicado: (2022) -
Speech Enhancement in the STFT Domain
por: Benesty, Jacob, et al.
Publicado: (2012) -
The concepts of muscle activity generation driven by upper limb kinematics
por: Schmidt, Marie D., et al.
Publicado: (2023) -
Quantifying the alignment error and the effect of incomplete somatosensory feedback on motor performance in a virtual brain–computer-interface setup
por: Lienkämper, Robin, et al.
Publicado: (2021) -
Error-Related Potentials in Reinforcement Learning-Based Brain-Machine Interfaces
por: Xavier Fidêncio, Aline, et al.
Publicado: (2022)