Cargando…
Multiscale heterogeneous optimal lockdown control for COVID-19 using geographic information
We study the problem of synthesizing lockdown policies—schedules of maximum capacities for different types of activity sites—to minimize the number of deceased individuals due to a pandemic within a given metropolitan statistical area (MSA) while controlling the severity of the imposed lockdown. To...
Autores principales: | Neary, Cyrus, Cubuktepe, Murat, Lauffer, Niklas, Jin, Xueting, Phillips, Alexander J., Xu, Zhe, Tong, Daoqin, Topcu, Ufuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913668/ https://www.ncbi.nlm.nih.gov/pubmed/35273215 http://dx.doi.org/10.1038/s41598-022-07692-5 |
Ejemplares similares
-
Author Correction: Multiscale heterogeneous optimal lockdown control for COVID-19 using geographic information
por: Neary, Cyrus, et al.
Publicado: (2022) -
Scenario-Based Verification of Uncertain MDPs
por: Cubuktepe, Murat, et al.
Publicado: (2020) -
Multiscale modeling of heterogeneous structures
por: Sorić, Jurica, et al.
Publicado: (2017) -
Emerging Understanding of Multiscale Tumor Heterogeneity
por: Gerdes, Michael J., et al.
Publicado: (2014) -
Geographic information system-based analysis of COVID-19 cases in India during pre-lockdown, lockdown, and unlock phases
por: Gangwar, Hari Shankar, et al.
Publicado: (2021)