Cargando…
Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany
During 2020, the infection rate of COVID-19 has been investigated by many scholars from different research fields. In this context, reliable and interpretable forecasts of disease incidents are a vital tool for policymakers to manage healthcare resources. In this context, several experts have called...
Autores principales: | Fritz, Cornelius, Dorigatti, Emilio, Rügamer, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913758/ https://www.ncbi.nlm.nih.gov/pubmed/35273252 http://dx.doi.org/10.1038/s41598-022-07757-5 |
Ejemplares similares
-
SGDAN—A Spatio-Temporal Graph Dual-Attention Neural Network for Quantified Flight Delay Prediction
por: Guo, Ziyu, et al.
Publicado: (2020) -
Deep Spatio-Temporal Graph Network with Self-Optimization for Air Quality Prediction
por: Jin, Xue-Bo, et al.
Publicado: (2023) -
Spatio-temporal graph data analytics
por: Gunturi, Venkata M V, et al.
Publicado: (2017) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
STTG-net: a Spatio-temporal network for human motion prediction based on transformer and graph convolution network
por: Chen, Lujing, et al.
Publicado: (2022)