Cargando…

Ab initio mechanism revealing for tricalcium silicate dissolution

Dissolution of minerals in water is ubiquitous in nature and industry, especially for the calcium silicate species. However, the behavior of such a complex chemical reaction is still unclear at atomic level. Here, we show that the ab initio molecular dynamics and metadynamics simulations enable quan...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yunjian, Pan, Hui, Liu, Qing, Ming, Xing, Li, Zongjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913775/
https://www.ncbi.nlm.nih.gov/pubmed/35273192
http://dx.doi.org/10.1038/s41467-022-28932-2
Descripción
Sumario:Dissolution of minerals in water is ubiquitous in nature and industry, especially for the calcium silicate species. However, the behavior of such a complex chemical reaction is still unclear at atomic level. Here, we show that the ab initio molecular dynamics and metadynamics simulations enable quantitative analyses of reaction pathways, thermodynamics and kinetics of the calcium ion dissolution from the tricalcium silicate (Ca(3)SiO(5)) surface. The calcium sites with different coordination environments lead to different reaction pathways and free energy barriers. The low free energy barriers result in that the detachment of the calcium ion is a ligand exchange and auto-catalytic process. Moreover, the water adsorption, proton exchange and diffusion of water into the surface layer accelerate the leaching of the calcium ion from the surface step by step. The discovery in this work thus would be a landmark for revealing the mechanism of tricalcium silicate hydration.