Cargando…
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
Drug–Drug interaction (DDI) prediction is essential in pharmaceutical research and clinical application. Existing computational methods mainly extract data from multiple resources and treat it as binary classification. However, this cannot unambiguously tell the boundary between positive and negativ...
Autores principales: | Hao, Xinkun, Chen, Qingfeng, Pan, Haiming, Qiu, Jie, Zhang, Yuxiao, Yu, Qian, Han, Zongzhao, Du, Xiaojing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913867/ http://dx.doi.org/10.1007/s41066-022-00315-4 |
Ejemplares similares
-
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021) -
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
por: Celebi, Remzi, et al.
Publicado: (2019) -
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
por: Wang, Meng, et al.
Publicado: (2021)