Cargando…
COMAL: compositional multi-scale feature enhanced learning for crowd counting
Accurately modeling the crowd’s head scale variations is an effective way to improve the counting accuracy of the crowd counting methods. Most counting networks apply a multi-branch network structure to obtain different scales of head features. Although they have achieved promising results, they do...
Autores principales: | Zhou, Fangbo, Zhao, Huailin, Zhang, Yani, Zhang, Qing, Liang, Lanjun, Li, Yaoyao, Duan, Zuodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914450/ https://www.ncbi.nlm.nih.gov/pubmed/35291715 http://dx.doi.org/10.1007/s11042-022-12249-9 |
Ejemplares similares
-
Congested Crowd Counting via Adaptive Multi-Scale Context Learning †
por: Zhang, Yani, et al.
Publicado: (2021) -
Handmade Comal Tortillas in Michoacán: Traditional Practices along the Rural-Urban Gradient
por: Arnés, Esperanza, et al.
Publicado: (2019) -
DMPNet: densely connected multi-scale pyramid networks for crowd counting
por: Li, Pengfei, et al.
Publicado: (2022) -
Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting
por: Huang, Liangjun, et al.
Publicado: (2022) -
An Adaptive Multi-Scale Network Based on Depth Information for Crowd Counting †
por: Zhang, Peng, et al.
Publicado: (2023)