Cargando…
Pretreatment Thoracic CT Radiomic Features to Predict Brain Metastases in Patients With ALK-Rearranged Non-Small Cell Lung Cancer
Objective: To identify CT imaging biomarkers based on radiomic features for predicting brain metastases (BM) in patients with ALK-rearranged non-small cell lung cancer (NSCLC). Methods: NSCLC patients with pathologically confirmed ALK rearrangement from January 2014 to December 2020 in our hospital...
Autores principales: | Wang, Hua, Chen, Yong-Zi, Li, Wan-Hu, Han, Ying, Li, Qi, Ye, Zhaoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914538/ https://www.ncbi.nlm.nih.gov/pubmed/35281837 http://dx.doi.org/10.3389/fgene.2022.772090 |
Ejemplares similares
-
Clinical, Conventional CT and Radiomic Feature-Based Machine Learning Models for Predicting ALK Rearrangement Status in Lung Adenocarcinoma Patients
por: Song, Lan, et al.
Publicado: (2020) -
A multiphase contrast-enhanced CT radiomics model for prediction of human epidermal growth factor receptor 2 status in advanced gastric cancer
por: Ma, Tingting, et al.
Publicado: (2022) -
Bilateral Ovarian Metastases from ALK Rearranged Non-Small Cell Lung Cancer
por: Lee, Kyung Ann, et al.
Publicado: (2014) -
Cystic brain metastases in ALK-rearranged non-small cell lung cancer
por: Marta, Guilherme Nader, et al.
Publicado: (2018) -
A machine learning-based radiomics model for prediction of tumor mutation burden in gastric cancer
por: Ma, Tingting, et al.
Publicado: (2023)