Cargando…
A high-resolution dataset on the plastic material flows in Switzerland
A material flow analysis of the main plastic types used and arising as waste in Switzerland in 2017 is conducted, including consideration of stock change. Seven main plastic application segments are distinguished (packaging; building and construction; automotive; electrical and electronic equipment;...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914542/ https://www.ncbi.nlm.nih.gov/pubmed/35282173 http://dx.doi.org/10.1016/j.dib.2022.108001 |
Sumario: | A material flow analysis of the main plastic types used and arising as waste in Switzerland in 2017 is conducted, including consideration of stock change. Seven main plastic application segments are distinguished (packaging; building and construction; automotive; electrical and electronic equipment; agriculture; household items, furniture, leisure and others; and textiles), further divided into 54 product subsegments. For each segment, the most commonly used plastic types are considered, in total including eleven plastic types (HDPE, LDPE, PP, PET, PS, PVC, ABS, HIPS, PA, PC, and PUR). All product life cycle stages are regarded, including the determination of the product subsegments in which the individual post-consumer secondary materials obtained from mechanical recycling are applied. The underlying data are gathered from official statistics and administrative databases, scientific literature, reports by industry organizations and research institutions, websites, and personal communication with stakeholders. The compiled data are then reconciled. All flow data are provided and depicted in two Sankey diagrams: one diagram shows the material flows on a product-subsegment level and the second one on a plastic-type level. Users may retrieve the data with a script and transfer them into a relational database. The present material flow analysis data are used as a basis for the scenario analysis in Klotz et al. [1]. Besides scenario modelling, the data can be used in conducting life cycle assessments. Both utilizations can serve as a support for designing future plastic flow systems. |
---|