Cargando…
Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules
The bioeffects of terahertz (THz) radiation received growing attention because of its influence on the interactions between biomolecules. Our work aimed to investigate the effects of THz irradiation on cell membrane, especially cell membrane permeability. We found that 0.1 THz irradiation promoted t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914550/ https://www.ncbi.nlm.nih.gov/pubmed/35281735 http://dx.doi.org/10.1016/j.isci.2022.103966 |
_version_ | 1784667736574525440 |
---|---|
author | Hu, Erling Zhang, Qi Shang, Sen Jiang, Yinan Lu, Xiaoyun |
author_facet | Hu, Erling Zhang, Qi Shang, Sen Jiang, Yinan Lu, Xiaoyun |
author_sort | Hu, Erling |
collection | PubMed |
description | The bioeffects of terahertz (THz) radiation received growing attention because of its influence on the interactions between biomolecules. Our work aimed to investigate the effects of THz irradiation on cell membrane, especially cell membrane permeability. We found that 0.1 THz irradiation promoted the endocytosis of FM4-64-labeled cells and the inhibition of dynamin attenuated but did not fully abolish the THz promoted endocytosis. Moreover, 0.1 THz irradiation also promoted the transmembrane of the rhodamine, as well as the chemical compounds GDC0941 and H89, evidenced by the confocal microscope observation and the western blotting analysis, respectively. These findings demonstrated 0.1 THz irradiation facilitated the transmembrane transport of small molecules by promoting both the cellular endocytosis and the diffusion process. Our study provided direct evidence that THz could affect the cell membrane permeability, broadened the THz affected cellular physiological processes, and implied its potential application in regulating the cell membrane functions. |
format | Online Article Text |
id | pubmed-8914550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-89145502022-03-12 Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules Hu, Erling Zhang, Qi Shang, Sen Jiang, Yinan Lu, Xiaoyun iScience Article The bioeffects of terahertz (THz) radiation received growing attention because of its influence on the interactions between biomolecules. Our work aimed to investigate the effects of THz irradiation on cell membrane, especially cell membrane permeability. We found that 0.1 THz irradiation promoted the endocytosis of FM4-64-labeled cells and the inhibition of dynamin attenuated but did not fully abolish the THz promoted endocytosis. Moreover, 0.1 THz irradiation also promoted the transmembrane of the rhodamine, as well as the chemical compounds GDC0941 and H89, evidenced by the confocal microscope observation and the western blotting analysis, respectively. These findings demonstrated 0.1 THz irradiation facilitated the transmembrane transport of small molecules by promoting both the cellular endocytosis and the diffusion process. Our study provided direct evidence that THz could affect the cell membrane permeability, broadened the THz affected cellular physiological processes, and implied its potential application in regulating the cell membrane functions. Elsevier 2022-02-22 /pmc/articles/PMC8914550/ /pubmed/35281735 http://dx.doi.org/10.1016/j.isci.2022.103966 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Hu, Erling Zhang, Qi Shang, Sen Jiang, Yinan Lu, Xiaoyun Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
title | Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
title_full | Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
title_fullStr | Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
title_full_unstemmed | Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
title_short | Continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
title_sort | continuous wave irradiation at 0.1 terahertz facilitates transmembrane transport of small molecules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914550/ https://www.ncbi.nlm.nih.gov/pubmed/35281735 http://dx.doi.org/10.1016/j.isci.2022.103966 |
work_keys_str_mv | AT huerling continuouswaveirradiationat01terahertzfacilitatestransmembranetransportofsmallmolecules AT zhangqi continuouswaveirradiationat01terahertzfacilitatestransmembranetransportofsmallmolecules AT shangsen continuouswaveirradiationat01terahertzfacilitatestransmembranetransportofsmallmolecules AT jiangyinan continuouswaveirradiationat01terahertzfacilitatestransmembranetransportofsmallmolecules AT luxiaoyun continuouswaveirradiationat01terahertzfacilitatestransmembranetransportofsmallmolecules |