Cargando…
Amputee Fall Risk Classification Using Machine Learning and Smartphone Sensor Data from 2-Minute and 6-Minute Walk Tests
The 6-min walk test (6MWT) is commonly used to assess a person’s physical mobility and aerobic capacity. However, richer knowledge can be extracted from movement assessments using artificial intelligence (AI) models, such as fall risk status. The 2-min walk test (2MWT) is an alternate assessment for...
Autores principales: | Juneau, Pascale, Baddour, Natalie, Burger, Helena, Bavec, Andrej, Lemaire, Edward D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914626/ https://www.ncbi.nlm.nih.gov/pubmed/35270892 http://dx.doi.org/10.3390/s22051749 |
Ejemplares similares
-
Automated step detection with 6-minute walk test smartphone sensors signals for fall risk classification in lower limb amputees
por: Juneau, Pascale, et al.
Publicado: (2022) -
Fall risk classification for people with lower extremity amputations using random forests and smartphone sensor features from a 6-minute walk test
por: Daines, Kyle J. F., et al.
Publicado: (2021) -
Comparison of Decision Tree and Long Short-Term Memory Approaches for Automated Foot Strike Detection in Lower Extremity Amputee Populations
por: Juneau, Pascale, et al.
Publicado: (2021) -
Novel algorithm for a smartphone-based 6-minute walk test application: algorithm, application development, and evaluation
por: Capela, Nicole A, et al.
Publicado: (2015) -
Comparison of walking performance over the first 2 minutes and the full 6 minutes of the Six-Minute Walk Test
por: Bohannon, Richard W, et al.
Publicado: (2014)