Cargando…

A Methodology for Simply Evaluating the Safety of a Passenger Ship Stability Using the Index for the Intact Stability Appraisal Module

To evaluate the safety of passenger ships’ stability, ten stability parameters should be calculated. However, since the process for calculating all stability parameters is complex without a ship loading program, a convenient methodology to simply calculate them and evaluate the safety condition of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Donghan, Im, Nam-Kyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914631/
https://www.ncbi.nlm.nih.gov/pubmed/35271085
http://dx.doi.org/10.3390/s22051938
Descripción
Sumario:To evaluate the safety of passenger ships’ stability, ten stability parameters should be calculated. However, since the process for calculating all stability parameters is complex without a ship loading program, a convenient methodology to simply calculate them and evaluate the safety condition of a passenger ship is required to alert the hazard to a captain, officer, and crew. The Index for Passenger Ship Intact Stability Appraisal Module (IPSAM) is proposed herein. According to the value of a passenger ship’s metacentric height (GM) which could be calculated by the ship’s roll period measured by sensors in real-time, IPSAM simply calculates nine intact stability parameters except for [Formula: see text] and proposes the present stability status as a Single Intact Stability Index (SISI). It helps crews easily recognize the safety of passenger ships’ stability as a decision support system in real-time. Based on the intact stability parameters of 331 loading conditions of 11 passenger ships, empirical formulas for IPSAM were derived. To verify the empirical formulas of IPSAM, the stability parameters of a passenger ship in 20 loading conditions were calculated using proposed empirical formulas and the principal calculation methods respectively, then compared. Additionally, the result of the SISI of 20 loading conditions successfully indicates the danger as the value of the SISI under 1.0 of the three loading conditions that do not satisfy the IMO intact stability requirements.