Cargando…
Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach
Vehicle-to-vehicle (V2V) communication has attracted increasing attention since it can improve road safety and traffic efficiency. In the underlay approach of mode 3, the V2V links need to reuse the spectrum resources preoccupied with vehicle-to-infrastructure (V2I) links, which will interfere with...
Autores principales: | Fu, Jinjuan, Qin, Xizhong, Huang, Yan, Tang, Li, Liu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914637/ https://www.ncbi.nlm.nih.gov/pubmed/35271024 http://dx.doi.org/10.3390/s22051874 |
Ejemplares similares
-
Deep Reinforcement Learning Based Resource Allocation for D2D Communications Underlay Cellular Networks
por: Yu, Seoyoung, et al.
Publicado: (2022) -
Optimal resource allocation method for energy harvesting based underlay Cognitive Radio networks
por: Liao, Jianbin, et al.
Publicado: (2023) -
Joint Power and Subchannel Allocation for Distributed Storage in Cellular-D2D Underlays
por: Han, Fengxia, et al.
Publicado: (2021) -
Radio Resource Allocation with The Fairness Metric for Low Density Signature OFDM in Underlay Cognitive Radio Networks †
por: Meylani, Linda, et al.
Publicado: (2019) -
Role of Machine Learning in Resource Allocation Strategy over Vehicular Networks: A Survey
por: Nurcahyani, Ida, et al.
Publicado: (2021)