Cargando…
Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients †
Diagnostics of a hand requires measurements of kinematics and joint limits. The standard tools for this purpose are manual devices such as goniometers which allow measuring only one joint simultaneously, making the diagnostics time-consuming. The paper presents a system for automatic measurement and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914655/ https://www.ncbi.nlm.nih.gov/pubmed/35271208 http://dx.doi.org/10.3390/s22052060 |
_version_ | 1784667772980035584 |
---|---|
author | Koter, Katarzyna Samowicz, Martyna Redlicka, Justyna Zubrycki, Igor |
author_facet | Koter, Katarzyna Samowicz, Martyna Redlicka, Justyna Zubrycki, Igor |
author_sort | Koter, Katarzyna |
collection | PubMed |
description | Diagnostics of a hand requires measurements of kinematics and joint limits. The standard tools for this purpose are manual devices such as goniometers which allow measuring only one joint simultaneously, making the diagnostics time-consuming. The paper presents a system for automatic measurement and computer presentation of essential parameters of a hand. Constructed software uses an integrated vision system, a haptic device for measurement, and has a web-based user interface. The system provides a simplified way to obtain hand parameters, such as hand size, wrist, and finger range of motions, using the homogeneous-matrix-based notation. The haptic device allows for active measurement of the wrist’s range of motion and additional force measurement. A study was conducted to determine the accuracy and repeatability of measurements compared to the gold standard. The system functionality was confirmed on five healthy participants, with results showing comparable results to manual measurements regarding fingers’ lengths. The study showed that the finger’s basic kinematic structure could be measured by a vision system with a mean difference to caliper measurement of 4.5 mm and repeatability with the Standard Deviations up to 0.7 mm. Joint angle limits measurement achieved poorer results with a mean difference to goniometer of 23.6º. Force measurements taken by the haptic device showed the repeatability with a Standard Deviation of 0.7 N. The presented system allows for a unified measurement and a collection of important parameters of a human hand with therapist interface visualization and control with potential use for post-stroke patients’ precise rehabilitation. |
format | Online Article Text |
id | pubmed-8914655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89146552022-03-12 Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † Koter, Katarzyna Samowicz, Martyna Redlicka, Justyna Zubrycki, Igor Sensors (Basel) Article Diagnostics of a hand requires measurements of kinematics and joint limits. The standard tools for this purpose are manual devices such as goniometers which allow measuring only one joint simultaneously, making the diagnostics time-consuming. The paper presents a system for automatic measurement and computer presentation of essential parameters of a hand. Constructed software uses an integrated vision system, a haptic device for measurement, and has a web-based user interface. The system provides a simplified way to obtain hand parameters, such as hand size, wrist, and finger range of motions, using the homogeneous-matrix-based notation. The haptic device allows for active measurement of the wrist’s range of motion and additional force measurement. A study was conducted to determine the accuracy and repeatability of measurements compared to the gold standard. The system functionality was confirmed on five healthy participants, with results showing comparable results to manual measurements regarding fingers’ lengths. The study showed that the finger’s basic kinematic structure could be measured by a vision system with a mean difference to caliper measurement of 4.5 mm and repeatability with the Standard Deviations up to 0.7 mm. Joint angle limits measurement achieved poorer results with a mean difference to goniometer of 23.6º. Force measurements taken by the haptic device showed the repeatability with a Standard Deviation of 0.7 N. The presented system allows for a unified measurement and a collection of important parameters of a human hand with therapist interface visualization and control with potential use for post-stroke patients’ precise rehabilitation. MDPI 2022-03-07 /pmc/articles/PMC8914655/ /pubmed/35271208 http://dx.doi.org/10.3390/s22052060 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koter, Katarzyna Samowicz, Martyna Redlicka, Justyna Zubrycki, Igor Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † |
title | Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † |
title_full | Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † |
title_fullStr | Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † |
title_full_unstemmed | Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † |
title_short | Hand Measurement System Based on Haptic and Vision Devices towards Post-Stroke Patients † |
title_sort | hand measurement system based on haptic and vision devices towards post-stroke patients † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914655/ https://www.ncbi.nlm.nih.gov/pubmed/35271208 http://dx.doi.org/10.3390/s22052060 |
work_keys_str_mv | AT koterkatarzyna handmeasurementsystembasedonhapticandvisiondevicestowardspoststrokepatients AT samowiczmartyna handmeasurementsystembasedonhapticandvisiondevicestowardspoststrokepatients AT redlickajustyna handmeasurementsystembasedonhapticandvisiondevicestowardspoststrokepatients AT zubryckiigor handmeasurementsystembasedonhapticandvisiondevicestowardspoststrokepatients |