Cargando…
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques
Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914671/ https://www.ncbi.nlm.nih.gov/pubmed/35270949 http://dx.doi.org/10.3390/s22051803 |
_version_ | 1784667778092892160 |
---|---|
author | Farooq, Muhammad Shoaib Arooj, Ansif Alroobaea, Roobaea Baqasah, Abdullah M. Jabarulla, Mohamed Yaseen Singh, Dilbag Sardar, Ruhama |
author_facet | Farooq, Muhammad Shoaib Arooj, Ansif Alroobaea, Roobaea Baqasah, Abdullah M. Jabarulla, Mohamed Yaseen Singh, Dilbag Sardar, Ruhama |
author_sort | Farooq, Muhammad Shoaib |
collection | PubMed |
description | Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can be reduced by early detection and proper treatment. Diagnosis of DR by using manual methods is a time-consuming and expensive task which involves trained ophthalmologists to observe and evaluate DR using digital fundus images of the retina. This study aims to systematically find and analyze high-quality research work for the diagnosis of DR using deep learning approaches. This research comprehends the DR grading, staging protocols and also presents the DR taxonomy. Furthermore, identifies, compares, and investigates the deep learning-based algorithms, techniques, and, methods for classifying DR stages. Various publicly available dataset used for deep learning have also been analyzed and dispensed for descriptive and empirical understanding for real-time DR applications. Our in-depth study shows that in the last few years there has been an increasing inclination towards deep learning approaches. 35% of the studies have used Convolutional Neural Networks (CNNs), 26% implemented the Ensemble CNN (ECNN) and, 13% Deep Neural Networks (DNN) are amongst the most used algorithms for the DR classification. Thus using the deep learning algorithms for DR diagnostics have future research potential for DR early detection and prevention based solution. |
format | Online Article Text |
id | pubmed-8914671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89146712022-03-12 Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques Farooq, Muhammad Shoaib Arooj, Ansif Alroobaea, Roobaea Baqasah, Abdullah M. Jabarulla, Mohamed Yaseen Singh, Dilbag Sardar, Ruhama Sensors (Basel) Article Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can be reduced by early detection and proper treatment. Diagnosis of DR by using manual methods is a time-consuming and expensive task which involves trained ophthalmologists to observe and evaluate DR using digital fundus images of the retina. This study aims to systematically find and analyze high-quality research work for the diagnosis of DR using deep learning approaches. This research comprehends the DR grading, staging protocols and also presents the DR taxonomy. Furthermore, identifies, compares, and investigates the deep learning-based algorithms, techniques, and, methods for classifying DR stages. Various publicly available dataset used for deep learning have also been analyzed and dispensed for descriptive and empirical understanding for real-time DR applications. Our in-depth study shows that in the last few years there has been an increasing inclination towards deep learning approaches. 35% of the studies have used Convolutional Neural Networks (CNNs), 26% implemented the Ensemble CNN (ECNN) and, 13% Deep Neural Networks (DNN) are amongst the most used algorithms for the DR classification. Thus using the deep learning algorithms for DR diagnostics have future research potential for DR early detection and prevention based solution. MDPI 2022-02-24 /pmc/articles/PMC8914671/ /pubmed/35270949 http://dx.doi.org/10.3390/s22051803 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Farooq, Muhammad Shoaib Arooj, Ansif Alroobaea, Roobaea Baqasah, Abdullah M. Jabarulla, Mohamed Yaseen Singh, Dilbag Sardar, Ruhama Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques |
title | Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques |
title_full | Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques |
title_fullStr | Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques |
title_full_unstemmed | Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques |
title_short | Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques |
title_sort | untangling computer-aided diagnostic system for screening diabetic retinopathy based on deep learning techniques |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914671/ https://www.ncbi.nlm.nih.gov/pubmed/35270949 http://dx.doi.org/10.3390/s22051803 |
work_keys_str_mv | AT farooqmuhammadshoaib untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques AT aroojansif untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques AT alroobaearoobaea untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques AT baqasahabdullahm untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques AT jabarullamohamedyaseen untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques AT singhdilbag untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques AT sardarruhama untanglingcomputeraideddiagnosticsystemforscreeningdiabeticretinopathybasedondeeplearningtechniques |