Cargando…
Parallel Cooperative Coevolutionary Grey Wolf Optimizer for Path Planning Problem of Unmanned Aerial Vehicles
The path planning of Unmanned Aerial Vehicles (UAVs) is a complex and hard task that can be formulated as a Large-Scale Global Optimization (LSGO) problem. A higher partition of the flight environment leads to an increase in route’s accuracy but at the expense of greater planning complexity. In this...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914685/ https://www.ncbi.nlm.nih.gov/pubmed/35270978 http://dx.doi.org/10.3390/s22051826 |
Sumario: | The path planning of Unmanned Aerial Vehicles (UAVs) is a complex and hard task that can be formulated as a Large-Scale Global Optimization (LSGO) problem. A higher partition of the flight environment leads to an increase in route’s accuracy but at the expense of greater planning complexity. In this paper, a new Parallel Cooperative Coevolutionary Grey Wolf Optimizer (PCCGWO) is proposed to solve such a planning problem. The proposed PCCGWO metaheuristic applies cooperative coevolutionary concepts to ensure an efficient partition of the original search space into multiple sub-spaces with reduced dimensions. The decomposition of the decision variables vector into several sub-components is achieved and multi-swarms are created from the initial population. Each sub-swarm is then assigned to optimize a part of the LSGO problem. To form the complete solution, the representatives from each sub-swarm are combined. To reduce the computation time, an efficient parallel master-slave model is introduced in the proposed parameters-free PCCGWO. The master will be responsible for decomposing the original problem and constructing the context vector which contains the complete solution. Each slave is designed to evolve a sub-component and will send the best individual as its representative to the master after each evolutionary cycle. Demonstrative results show the effectiveness and superiority of the proposed PCCGWO-based planning technique in terms of several metrics of performance and nonparametric statistical analyses. These results show that the increase in the number of slaves leads to a more efficient result as well as a further improved computational time. |
---|