Cargando…
A Vision-Based System for In-Sleep Upper-Body and Head Pose Classification
Sleep quality is known to have a considerable impact on human health. Recent research shows that head and body pose play a vital role in affecting sleep quality. This paper presents a deep multi-task learning network to perform head and upper-body detection and pose classification during sleep. The...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914692/ https://www.ncbi.nlm.nih.gov/pubmed/35271162 http://dx.doi.org/10.3390/s22052014 |
Sumario: | Sleep quality is known to have a considerable impact on human health. Recent research shows that head and body pose play a vital role in affecting sleep quality. This paper presents a deep multi-task learning network to perform head and upper-body detection and pose classification during sleep. The proposed system has two major advantages: first, it detects and predicts upper-body pose and head pose simultaneously during sleep, and second, it is a contact-free home security camera-based monitoring system that can work on remote subjects, as it uses images captured by a home security camera. In addition, a synopsis of sleep postures is provided for analysis and diagnosis of sleep patterns. Experimental results show that our multi-task model achieves an average of 92.5% accuracy on challenging datasets, yields the best performance compared to the other methods, and obtains 91.7% accuracy on the real-life overnight sleep data. The proposed system can be applied reliably to extensive public sleep data with various covering conditions and is robust to real-life overnight sleep data. |
---|