Cargando…
Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process
Soft sensor technology has become an effective tool to enable real-time estimations of key quality variables in industrial rubber-mixing processes, which facilitates efficient monitoring and a control of rubber manufacturing. However, it remains a challenging issue to develop high-performance soft s...
Autores principales: | Zhang, Yan, Jin, Huaiping, Liu, Haipeng, Yang, Biao, Dong, Shoulong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914694/ https://www.ncbi.nlm.nih.gov/pubmed/35267845 http://dx.doi.org/10.3390/polym14051018 |
Ejemplares similares
-
Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry
por: Li, Youwei, et al.
Publicado: (2021) -
Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-Supervised Data Streams
por: Wang, Yuechen, et al.
Publicado: (2023) -
Combined mechanistic and genetic programming approach to modeling pilot NBR production: influence of feed compositions on rubber Mooney viscosity
por: He, Ge, et al.
Publicado: (2021) -
Correction: Combined mechanistic and genetic programming approach to modeling pilot NBR production: influence of feed compositions on rubber Mooney viscosity
por: He, Ge, et al.
Publicado: (2021) -
A Fusion Transformer for Multivariable Time Series Forecasting: The Mooney Viscosity Prediction Case
por: Yang, Ye, et al.
Publicado: (2022)