Cargando…
A Pruning Method for Deep Convolutional Network Based on Heat Map Generation Metrics
With the development of deep learning, researchers design deep network structures in order to extract rich high-level semantic information. Nowadays, most popular algorithms are designed based on the complexity of visible image features. However, compared with visible image features, infrared image...
Autores principales: | Zhang, Wenli, Wang, Ning, Chen, Kaizhen, Liu, Yuxin, Zhao, Tingsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914711/ https://www.ncbi.nlm.nih.gov/pubmed/35271168 http://dx.doi.org/10.3390/s22052022 |
Ejemplares similares
-
Computationally Efficient Wildfire Detection Method Using a Deep Convolutional Network Pruned via Fourier Analysis
por: Pan, Hongyi, et al.
Publicado: (2020) -
Lossless Reconstruction of Convolutional Neural Network for Channel-Based Network Pruning
por: Lee, Donghyeon, et al.
Publicado: (2023) -
Retrain or Not Retrain? - Efficient Pruning Methods of Deep CNN Networks
por: Pietron, Marcin, et al.
Publicado: (2020) -
Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment
por: ZHANG, OLIVER, et al.
Publicado: (2021) -
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022)