Cargando…

Poly 3-Hydroxybutyrate 4-hydroxybutyrate (P34HB) as a Potential Polymer for Drug-Eluting Coatings on Metal Coronary Stents

Drug-eluting stents (DES) are a main interventional therapeutic instrument to treat coronary diseases. Degradable polymers such as polylactic acid (PLA) for coatings that only degrade into small molecules in human bodies have been developed for coating polymers, but most coatings often lack ductilit...

Descripción completa

Detalles Bibliográficos
Autores principales: Jian, Yihui, Zhu, Yufang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914718/
https://www.ncbi.nlm.nih.gov/pubmed/35267817
http://dx.doi.org/10.3390/polym14050994
Descripción
Sumario:Drug-eluting stents (DES) are a main interventional therapeutic instrument to treat coronary diseases. Degradable polymers such as polylactic acid (PLA) for coatings that only degrade into small molecules in human bodies have been developed for coating polymers, but most coatings often lack ductility and can be easily peeled off from the stents after balloon expansion. In this study, biodegradable poly 3-hydroxybutyrate 4-hydroxybutyrate (P34HB) with good ductility was proposed to be a latent polymer for drug-eluting coatings on the stents. Using P34HB-1 (4HB% = 1%wt, Mw: 225,000) and P34HB-10 (4HB% = 10%wt, Mw: 182,000) as two candidates, both P34HB-1 and P34HB-10 exhibited excellent solubility in CHCl(3). Their drug solutions remained highly stable and did not become turbid over a period of 48 h, and were conducive to batch preparation of uniform drug coatings. Drug coatings made by both P34HB-1 and P34HB-10 on the stents were almost complete before and after dilation by balloon owing to their excellent adhesion and extrusion resistance properties. Furthermore, both P34HB-1 and P34HB-10 had excellent biocompatibility in cytotoxicity and hemolysis tests. However, P34HB-1 drug coatings showed better drug release control than P34HB-10 drug coatings and Firebird2(®), indicating that P34HB-1 is more suitable for a latent coating polymer of coronary stents.