Cargando…
Traditional Machine Learning Models and Bidirectional Encoder Representations From Transformer (BERT)–Based Automatic Classification of Tweets About Eating Disorders: Algorithm Development and Validation Study
BACKGROUND: Eating disorders affect an increasing number of people. Social networks provide information that can help. OBJECTIVE: We aimed to find machine learning models capable of efficiently categorizing tweets about eating disorders domain. METHODS: We collected tweets related to eating disorder...
Autores principales: | Benítez-Andrades, José Alberto, Alija-Pérez, José-Manuel, Vidal, Maria-Esther, Pastor-Vargas, Rafael, García-Ordás, María Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914746/ https://www.ncbi.nlm.nih.gov/pubmed/35200156 http://dx.doi.org/10.2196/34492 |
Ejemplares similares
-
Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT
por: Benítez-Andrades, José Alberto, et al.
Publicado: (2022) -
BERT-Kgly: A Bidirectional Encoder Representations From Transformers (BERT)-Based Model for Predicting Lysine Glycation Site for Homo sapiens
por: Liu, Yinbo, et al.
Publicado: (2022) -
Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model
por: Areshey, Ali, et al.
Publicado: (2023) -
Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT)
por: Li, Jia, et al.
Publicado: (2022) -
A BERT Framework to Sentiment Analysis of Tweets
por: Bello, Abayomi, et al.
Publicado: (2023)