Cargando…
Brain Magnetic Resonance Imaging Classification Using Deep Learning Architectures with Gender and Age
Usage of effective classification techniques on Magnetic Resonance Imaging (MRI) helps in the proper diagnosis of brain tumors. Previous studies have focused on the classification of normal (nontumorous) or abnormal (tumorous) brain MRIs using methods such as Support Vector Machine (SVM) and AlexNet...
Autores principales: | Wahlang, Imayanmosha, Maji, Arnab Kumar, Saha, Goutam, Chakrabarti, Prasun, Jasinski, Michal, Leonowicz, Zbigniew, Jasinska, Elzbieta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914787/ https://www.ncbi.nlm.nih.gov/pubmed/35270913 http://dx.doi.org/10.3390/s22051766 |
Ejemplares similares
-
Unveiling Frequently Co-Occurring Reasons of Attitudinal Acceptance of Intimate Partner Violence against Women: A Behavioral Data Science Perspective
por: Yasir, Muhammad, et al.
Publicado: (2022) -
A Social Network Analysis Approach to COVID-19 Community Detection Techniques
por: Choudhury, Tanupriya, et al.
Publicado: (2022) -
Initial diagnoses in university courses as an innovation in education—case study from Poland
por: Jasińska, Elżbieta, et al.
Publicado: (2022) -
Patient-Specific Deep Architectural Model for ECG Classification
por: Luo, Kan, et al.
Publicado: (2017) -
Deep Iris: Deep Learning for Gender Classification Through Iris Patterns
por: Khalifa, Nour Eldeen M., et al.
Publicado: (2019)