Cargando…

A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation

In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed...

Descripción completa

Detalles Bibliográficos
Autores principales: Velarde-Alvarado, Pablo, Gonzalez, Hugo, Martínez-Peláez, Rafael, Mena, Luis J., Ochoa-Brust, Alberto, Moreno-García, Efraín, Félix, Vanessa G., Ostos, Rodolfo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914796/
https://www.ncbi.nlm.nih.gov/pubmed/35270994
http://dx.doi.org/10.3390/s22051847
Descripción
Sumario:In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.