Cargando…
Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview
Recent engineering and neuroscience applications have led to the development of brain–computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb mo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914806/ https://www.ncbi.nlm.nih.gov/pubmed/35271175 http://dx.doi.org/10.3390/s22052028 |
_version_ | 1784667838762450944 |
---|---|
author | Asanza, Víctor Peláez, Enrique Loayza, Francis Lorente-Leyva, Leandro L. Peluffo-Ordóñez, Diego H. |
author_facet | Asanza, Víctor Peláez, Enrique Loayza, Francis Lorente-Leyva, Leandro L. Peluffo-Ordóñez, Diego H. |
author_sort | Asanza, Víctor |
collection | PubMed |
description | Recent engineering and neuroscience applications have led to the development of brain–computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy. |
format | Online Article Text |
id | pubmed-8914806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89148062022-03-12 Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview Asanza, Víctor Peláez, Enrique Loayza, Francis Lorente-Leyva, Leandro L. Peluffo-Ordóñez, Diego H. Sensors (Basel) Review Recent engineering and neuroscience applications have led to the development of brain–computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy. MDPI 2022-03-04 /pmc/articles/PMC8914806/ /pubmed/35271175 http://dx.doi.org/10.3390/s22052028 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Asanza, Víctor Peláez, Enrique Loayza, Francis Lorente-Leyva, Leandro L. Peluffo-Ordóñez, Diego H. Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview |
title | Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview |
title_full | Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview |
title_fullStr | Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview |
title_full_unstemmed | Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview |
title_short | Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview |
title_sort | identification of lower-limb motor tasks via brain–computer interfaces: a topical overview |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914806/ https://www.ncbi.nlm.nih.gov/pubmed/35271175 http://dx.doi.org/10.3390/s22052028 |
work_keys_str_mv | AT asanzavictor identificationoflowerlimbmotortasksviabraincomputerinterfacesatopicaloverview AT pelaezenrique identificationoflowerlimbmotortasksviabraincomputerinterfacesatopicaloverview AT loayzafrancis identificationoflowerlimbmotortasksviabraincomputerinterfacesatopicaloverview AT lorenteleyvaleandrol identificationoflowerlimbmotortasksviabraincomputerinterfacesatopicaloverview AT peluffoordonezdiegoh identificationoflowerlimbmotortasksviabraincomputerinterfacesatopicaloverview |