Cargando…
Compressed Deep Learning to Classify Arrhythmia in an Embedded Wearable Device
The importance of an embedded wearable device with automatic detection and alarming cannot be overstated, given that 15–30% of patients with atrial fibrillation are reported to be asymptomatic. These asymptomatic patients do not seek medical care, hence traditional diagnostic tools including Holter...
Autores principales: | Lee, Kwang-Sig, Park, Hyun-Joon, Kim, Ji Eon, Kim, Hee Jung, Chon, Sangil, Kim, Sangkyu, Jang, Jaesung, Kim, Jin-Kook, Jang, Seongbin, Gil, Yeongjoon, Son, Ho Sung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914813/ https://www.ncbi.nlm.nih.gov/pubmed/35270923 http://dx.doi.org/10.3390/s22051776 |
Ejemplares similares
-
Atrial fibrillation classification based on convolutional neural networks
por: Lee, Kwang-Sig, et al.
Publicado: (2019) -
A Unified Deep-Learning Model for Classifying the Cross-Country Skiing Techniques Using Wearable Gyroscope Sensors
por: Jang, Jihyeok, et al.
Publicado: (2018) -
Combination of Wearable Multi-Biosensor Platform and Resonance Frequency Training for Stress Management of the Unemployed Population
por: Wu, Wanqing, et al.
Publicado: (2012) -
Detecting and classifying method based on similarity matching of Android malware behavior with profile
por: Jang, Jae-wook, et al.
Publicado: (2016) -
Introduction of Wearable Device in Cardiovascular Field for Monitoring Arrhythmia
por: Kim, Nam Ho, et al.
Publicado: (2021)