Cargando…
DAN-SuperPoint: Self-Supervised Feature Point Detection Algorithm with Dual Attention Network
In view of the poor performance of traditional feature point detection methods in low-texture situations, we design a new self-supervised feature extraction network that can be applied to the visual odometer (VO) front-end feature extraction module based on the deep learning method. First, the netwo...
Autores principales: | Li, Zhaoyang, Cao, Jie, Hao, Qun, Zhao, Xue, Ning, Yaqian, Li, Dongxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914829/ https://www.ncbi.nlm.nih.gov/pubmed/35271087 http://dx.doi.org/10.3390/s22051940 |
Ejemplares similares
-
Efficient Underground Tunnel Place Recognition Algorithm Based on Farthest Point Subsampling and Dual-Attention Transformer
por: Chai, Xinghua, et al.
Publicado: (2023) -
Self-Supervised Point Set Local Descriptors for Point Cloud Registration
por: Yuan, Yijun, et al.
Publicado: (2021) -
Enhanced Super4PCS Algorithm by Comparing Transformed Normals at Corresponding Points
por: Liu, Hai, et al.
Publicado: (2022) -
An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features
por: He, Ying, et al.
Publicado: (2017) -
Graph Attention Feature Fusion Network for ALS Point Cloud Classification
por: Yang, Jie, et al.
Publicado: (2021)